一文读懂APU/BPU/CPU/DPU/EPU/FPU/GPU等处理器
W。其主页上给出的另一个能效数据是600GOPs/W。此外,Kneron同时也在FPGA开发云端的硬件IP。据可靠消息,Kneron也要在中国大陆建立研发部门了,地点涉及北京、上海、深圳。
VeriSilicon(芯原)的VIP8000。VSI创立于2001年。VSI于今年5月以神经网络处理器IP的名义发布了这款代号VIP8000的IP。从其公布的消息"VeriSilicon’s Vivante VIP8000 Neural Network Processor IP Delivers Over 3 Tera MACs Per Second"来看,这款芯片使用的并不是其DSP core,而是内置了其2015年收购的Vivante的GPU core。按照VSI的说法,VIP8000在16nm FinFET工艺下的计算力超过3 TMAC/s,能效高于1.5 GMAC/s/mW。
DNPU。Deep Neural-Network Processing Unit。DNPU来自于KAIST在ISSCC2017上发表的一篇文章。我把DNPU当做是NPU的一种别名,毕竟现在业内做的支持神经网络计算的芯片没有只支持"非深度"神经网络的。关于DNPU可以参考"从ISSCC Deep Learning处理器论文到人脸识别产品"。
Eyeriss。MIT的神经网络项目,针对CNN的进行高能效的计算加速设计。
Thinker。清华微电子所设计的一款可重构多模态神经计算芯片,可以平衡CNN和RNN在计算和带宽之间的资源冲突。
Neural/Neuromorphic Processing Unit。神经/神经形态处理器。这和上面的神经网络处理器还有所不同。而且,一般也不以"处理器"的名字出现,更多的时候被称为"神经形态芯片(Neuromorphic Chip)"或者是"类脑芯片(Brain-Inspired Chip)"。这类AI芯片不是用CNN、DNN等网络形式来做计算,而是以更类似于脑神经组成结构的SNN(Spiking Neural Network)的形式来进行计算。随便列几个,都不是"xPU"的命名方式。
Qualcomm的Zeroth。高通几年前将Zeroth定义为一款NPU,配合以软件,可以方便的实现SNN的计算。但是,NPU似乎不见了踪影,现在只剩下了同名的机器学习引擎Zeroth SDK。
IBM的TrueNorth。IBM2014年公布的TrueNorth。在一颗芯片上集成了4096个并行的core,每个core包含了256个可编程的神经元neurons,一共1百万个神经元。每个神经元有256个突触synapses,共256 Mlillion。TrueNorth使用了三星的28nm的工艺,共5.4 billion个晶体管。
BrainChip的SNAP(Spiking Neuron Adaptive Processor )。已经有了赌场的应用。
GeneralVision的CM1K、NM500 chip,以及NeuroMem IP。这家公司的CM1K芯片有1k个神经元,每个神经元对应256Byte存储。虽然无法和强大的TrueNorth相提并论,但是已有客户应用。并且,提供BrainCard,上面有FPGA,并且可以直接和Arduino以及Raspberry Pi连接。
Knowm 这家start-up在忆阻器(memristor)技术基础上做"processing in memory"的AI芯片研发。不过,与前面提到的Mythic(IPU部分)不同的是,Known做的是类脑芯片。Knowm所用的关键技术是一种称为热力学内存(kT-RAM)的memory,是根据AHaH理论(Anti-Hebbian and Hebbian)发展而来。
Koniku 成立于2014年的start-up,要利用生物神经元来做计算,"Biological neurons on a chip"。主页在倒计时,可能要有重要进展公布,期待。
OPU
Optical-Flow Processing Unit。光流处理器。有需要用专门的芯片来实现光流算法吗?不知道,但是,用ASIC IP来做加速应该是要的。
PPU
Physical Processing Unit。物理处理器。要先解释一下物理运算,就知道物理处理器是做什么的了。物理计算,就是模拟一个物体在真实世界中应该符合的物理定律。具体的说,可以使虚拟世界中的物体运动符合真实世界的物理定律,可以使游戏中的物体行为更加真实,例如布料模拟、毛发模拟、碰撞侦测、流体力学模拟等。开发物理计算引擎的公司有那么几家,使用CPU来完成物理计算,支持多种平台。但是,Ageia应该是唯一一个使用专用芯片来加速物理计算的公司。Ageia于2006年发布了PPU芯片PhysX,还发布了基于PPU的物理加速卡,同时提供SDK给游戏开发者。2008年被NVIDIA收购后,PhysX加速卡产品被逐渐取消,现在物理计算的加速功能由NVIDIA的GPU实现,PhysX SDK被NVIDIA重新打造。
QPU
Quantum Processing Unit。量子处理器。量子计算机也是近几年比较火的研究方向。作者承认在这方面所知甚少。可以关注这家成立于1999年的公司D-Wave System。DWave大概每两年可以将其QPU上的量子位个数翻倍一次。
RPU
Resistive Processing Unit。阻抗处理单元RPU。这是IBM Watson Research Center的研究人员提出的概念,真的是个处理单元,而不是处理器
- 英伟达+台积电组合,英特尔人工智能必须跨过的坎(01-03)
- AI单芯片有啥神奇,凭它英特尔能让AMD、NVIDIA永不翻身?(01-26)
- 冤家路窄,英特尔/AMD/英伟达谁能在AI芯片战中笑到最后?(01-13)
- 没有无缘无故的爱恨,华尔街对英伟达/AMD的好恶对比自有其道理(04-17)
- 从投资看软银的科技野心,准备抱上NVIDIA的AI大腿?(04-28)
- CPU、GPU、FPGA和DSP开启AI芯片时代(05-29)