微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 微出口 | 解析:人工智能芯片蓝海争夺战的几大势力

微出口 | 解析:人工智能芯片蓝海争夺战的几大势力

时间:11-26 来源:半导体行业观察 点击:

很纠结的,这究竟是个新兴势力,还是传统公司。但考虑到Google已经那么多年了,我就把他放在传统里面吧。虽然传统也是很新的。而谷歌的人工智能相关芯片就是TPU。也就是Tensor Processing Unit。

TPU是专门为机器学习应用而设计的专用芯片。通过降低芯片的计算精度,减少实现每个计算操作所需的晶体管数量,从而能让芯片的每秒运行的操作个数更高,这样经过精细调优的机器学习模型就能在芯片上运行的更快,进而更快的让用户得到更智能的结果。Google将TPU加速器芯片嵌入电路板中,利用已有的硬盘PCI-E接口接入数据中心服务器中。

据Google 资深副总Urs Holzle 透露,当前Google TPU、GPU 并用,这种情况仍会维持一段时间,但也语带玄机表示,GPU 过于通用,Google 偏好专为机器学习设计的芯片。GPU 可执行绘图运算工作,用途多元;TPU 属于ASIC,也就是专为特定用途设计的特殊规格逻辑IC,由于只执行单一工作,速度更快,但缺点是成本较高。至于CPU,Holzle 表示,TPU 不会取代CPU,研发TPU 只是为了处理尚未解决的问题。但是他也指出,希望芯片市场能有更多竞争。

如果AI算法改变了(从逻辑上讲随着时间的推移算法应该会改变),你是不是想要一款可以重新编程的芯片,以适应这些改变?如果情况是这样的,另一种芯片适合,它就是FPGA(现场可编程门阵列)。FPGA可以编程,和ASIC不同。微软用一些FPGA芯片来增强必应搜索引擎的AI功能。我们很自然会问:为什么不使用FPGA呢?

谷歌的回答是:FPGA的计算效率比ASIC低得多,因为它可以编程。TPU拥有一个指令集,当TensorFlow程序改变时,或者新的算法出现时,它们可以在TPU上运行。

现在问题的答案开始浮现。在谷歌看来,能耗是一个重要的考量标准,数据中心相当巨大,建设在世界各地,包括芬兰和台湾。能耗越高,运营的成本就越高,随着时间的推移实际消耗的金钱会成倍增长。谷歌工程师对比了FPGA和ASIC的效率,最终决定选择ASIC。

问题的第二部分与TPU的指令集有关。这是一套基本的命令,它以硬编码形式存在于芯片中,能够识别、执行;在芯片世界,指令集是计算机运行的基础。

在开发TPU指令集时,它是专门用来运行TensorFlow的,TensorFlow是一个开源软件库,针对的是AI应用的开发。谷歌认为,如果AI有必要在底层进行改变,极可能发生在软件上,芯片应该具备弹性,以适应这种改变。

TPU架构的技术细节让许多了解芯片的人惊奇。Anandtech的Joshua Ho有一个有趣的理论:TPU更加类似于第三类芯片,也就是所谓的数字信号处理器(Digital Signal Processor)。

(5)微软

这是又一个由软转硬的代表,微软蛰伏六年,打造出了一个迎接AI世代的芯片。那就是Project Catapult。

据介绍,这个FPGA 目前已支持微软Bing,未来它们将会驱动基于深度神经网络--以人类大脑结构为基础建模的人工智能--的新搜索算法,在执行这个人工智能的几个命令时,速度比普通芯片快上几个数量级。有了它,你的计算机屏幕只会空屏 23 毫秒而不是 4 秒。

在第三代原型中,芯片位于每个服务器的边缘,直接插入到网络,但仍旧创造任何机器都可接入的 FPGA 池。这开始看起来是 Office 365 可用的东西了。最终,Project Catapult 准备好上线了。另外,Catapult 硬件的成本只占了服务器中所有其他的配件总成本的 30%,需要的运转能量也只有不到 10%,但其却带来了 2 倍原先的处理速度。

另外还有赛灵思、高通、中国寒武纪等一系列芯片投入到AI的研发。我们暂且按下。先看一下新兴的AI芯片势力。

二、新兴势力

(1)KnuEdge

KnuEdge实际上并不是一个初创公司,它由NASA的前任负责人创立,已经在一个隐形模式下运营了10年。KnuEdge最近从隐形的模式中走出,并让全世界知道他们从一个匿名的投资人获取1亿美元的投资用来开发一个新的"神经元芯片"。

KUNPATH提供基于LambaFabric的芯片技术,LambaFabric将会通过与现在市场上的GPUs、CPUs和FPGAs完全不同的架构进行神经网络的计算。

LambdaFabric本质上是为在高要求的运算环境下向上拓展至512000台设备而设计,机架至机架延迟时间只有400毫微秒,低功耗的256核处理器。

KNUPATH技术以生物学原理为基础,将会重新定义数据中心和消费设备市场中的芯片级/系统级计算。

对比其他相似的芯片,这个芯片技术应提供2倍到6倍的性能优势,并且公司已经通过销售他们的样机系统获得了收入。在"KnuEdge伞形结构"下,KnuEdge由3个单独的公司组成,KnuPath提供他们的芯片,KnuVerse提供通过验证的军事级的语音识别和

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top