微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > GPU/FPGA尽显鸡肋,谁才能拿下人工智能战略制高点

GPU/FPGA尽显鸡肋,谁才能拿下人工智能战略制高点

时间:11-05 来源:乐晴智库——安信证券 点击:

联网应用的空前繁荣。
  

  

开源人工智能平台可以增强云计算业务的吸引力和竞争力
  

以谷歌为例,用户使用开源的TensorFlow 平台训练和导出自己所需要的人工智能模型,然后就可直接把模型导入TensorFlow Serving 对外提供预测类云服务,相当于TensorFlow 系列把整个用深度学习模型对外提供服务的方案全包了。
  

实质上是将开源深度学习工具用户直接变为其云计算服务的用户,包括阿里、亚马逊在内的云计算服务商都将机器学习平台嵌入其中作为增强其竞争实力和吸引更多用户的方式。
  

2015 年以来,全球人工智能顶尖巨头均争向开源自身最核心的人工智能平台,各种开源深度学习框架层出不穷,其中包括:Caffe、CNTK、MXNet、Neon、TensorFlow、Theano 和 Torch等。
  

人工智能催生新一代专用计算芯片 

回顾计算机行业发展史,新的计算模式往往催生新的专用计算芯片。人工智能时代新计算的强大需求,正在催生出新的专用计算芯片。
 

GPU 及其局限性 

目前以深度学习为代表的人工智能新计算需求,主要采用GPU、FPGA 等已有适合并行计算的通用芯片来实现加速。
  

在产业应用没有大规模兴起之时,使用这类已有的通用芯片可以避免专门研发定制芯片(ASIC)的高投入和高风险,但是,由于这类通用芯片设计初衷并非专门针对深度学习,因而,天然存在性能、功耗等方面的瓶颈。随着人工智能应用规模的扩大,这类问题将日益突出。
  

  

GPU 作为图像处理器,设计初衷是为了应对图像处理中需要大规模并行计算。因此,其在应用于深度学习算法时,有三个方面的局限性:  

第一, 应用过程中无法充分发挥并行计算优势。深度学习包含训练和应用两个计算环节,GPU 在深度学习算法训练上非常高效,但在应用时一次性只能对于一张输入图像进行处理, 并行度的优势不能完全发挥。
  

第二, 硬件结构固定不具备可编程性。深度学习算法还未完全稳定,若深度学习算法发生大的变化,GPU 无法像FPGA 一样可以灵活的配置硬件结构。
  

第三, 运行深度学习算法能效远低于FPGA。学术界和产业界研究已经证明,运行深度学习算法中实现同样的性能,GPU 所需功耗远大于FPGA,例如国内初创企业深鉴科技基于FPGA 平台的人工智能芯片在同样开发周期内相对GPU 能效有一个数量级的提升。
  

  

FPGA 及其局限性  

FPGA,即现场可编辑门阵列,是一种新型的可编程逻辑器件。其设计初衷是为了实现半定制芯片的功能,即硬件结构可根据需要实时配置灵活改变。
  

研究报告显示,目前的FPGA市场由Xilinx 和Altera 主导,两者共同占有85%的市场份额,其中Altera 在2015 年被intel以167 亿美元收购(此交易为 intel 有史以来涉及金额最大的一次收购案例),另一家Xilinx则选择与IBM 进行深度合作,背后都体现了 FPGA 在人工智能时代的重要地位。
  

尽管 FPGA 倍受看好,甚至新一代百度大脑也是基于FPGA 平台研发,但其毕竟不是专门为了适用深度学习算法而研发,实际仍然存在不少局限: 

第一,基本单元的计算能力有限。为了实现可重构特性,FPGA 内部有大量极细粒度的基本单元,但是每个单元的计算能力(主要依靠LUT 查找表)都远远低于CPU 和GPU 中的ALU模块。
  

第二,速度和功耗相对专用定制芯片(ASIC)仍然存在不小差距。
  

第三,FPGA 价格较为昂贵,在规模放量的情况下单块FPGA 的成本要远高于专用定制芯片。
 

人工智能定制芯片是大趋势,从发展趋势上看,人工智能定制芯片将是计算芯片发展的大方向: 

第一, 定制芯片的性能提升非常明显。  

例如 NVIDIA 首款专门为深度学习从零开始设计的芯片Tesla P100 数据处理速度是其2014 年推出GPU 系列的12 倍。
  

谷歌为机器学习定制的芯片TPU 将硬件性能提升至相当于按照摩尔定律发展7 年后的水平。需要指出的是这种性能的飞速提升对于人工智能的发展意义重大。
  

中国科学院计算所研究员、 寒武纪深度学习处理器芯片创始人陈云霁博士在《中国计算机学会通讯》上撰文指出:通过设计专门的指令集、微结构、人工神经元电路、存储层次,有可能在3~5 年内将深度学习模型的类脑计算机的智能处理效率提升万倍(相对于谷歌大脑)。
  

提升万倍的意义在于,可以把谷歌大脑这样的深度学习超级计算机放到手机中,帮助我们本地、实时完成各种图像、语音和文本的理解和识别;更重要的是,具备实时训练的能力之后,就可以不间断地通过观察人的行为不断提升其能力,成为我们生活中离不开的智能助理。
  

  

  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top