凭啥说5G是物联网关键技术?这四点优势够不够
GaN 器件发展历史:在氮化镓器件研究初期,晶体合成困难。1986 年,日本的赤崎勇开发了"低温堆积缓冲层技术"可以获得用于半导体元件的高品质氮化镓。由于带隙覆盖了更广的光谱范围,用氮化镓制造的高亮度 LED、绿色 LED、蓝光光盘产品应用与商业领域。从 1993 年开始,利用二维电子气氮化镓能达到更高的迁移率,适合砷化镓所不能达到的高频动作。采用氮化镓的高频晶体管开始用在移动通信站、通信卫星、雷达等领域。到了 2000年前后,硅制功率元件已经普及,之前利用蓝宝石基板的氮化镓类功率元件价格高,很难进入商业领域。这时开始采用硅基板,但制造成本依然很高。主要是应用于 ICT 设备、工业设备和汽车电子等领域的小型电源组件。未来有望采用氮化镓基板,获得高品质化、具有较高价格竞争力的氮化镓功率器件。自 2013 年开始,随着技术积累逐渐完成,氮化镓民用市场开始起步。
各国政策的大力推进下,国际半导体大厂纷纷将目光投向氮化镓功率半导体领域。随着 Si材料达到物理极限,在摩尔定律驱动下寻求下一个替代者刻不容缓,氮化镓因各方面优异的电学性能被认为是未来半导体材料的首选。传统半导体厂商关于氮化镓器件的收购和合作、许可协议不断发生,氮化镓功率半导体已经成了各家必争之地。美国和欧洲分别于 2002年和 2007年启动了氮化镓功率半导体推动计划,并且在 2007年首次在 6寸硅衬底上长出了氮化镓,自此从应用角度开始了氮化镓功率半导体推进。2013 年出现通过了 JEDEC 质量标淮的硅基氮化镓功率器件,同年中国科技部推出了第三代半导体 863计划。
GaN 应用领域包括军事和宇航、无线基础设施、卫星通信、有线宽带,以及其它 ISM 频段应用。GaN 最初是为支持政府军事和太空项目而开发,但已得到商业市场的完全认可和应用,在无线基础设施领域的应用已超越国防应用,市场占比超过 GaN 市场总量的一半以上。随着对数据传输及更高工作频率和带宽需求的增长,2016~2022 年无线基础设施领域的 CAGR将达到 16%。在未来的网络设计中,如载波聚合和大规模 MIMO 等新技术的发展应用,将使 GaN比现有横向扩散金属氧化物半导体(LDMOS)更具优势。 但与此同时,国防领域仍将是 GaN 不可忽视的重要应用市场,并保持稳定增长。GaN 在国防领域的应用主要包括 IED干扰器、军事通讯、雷达、电子对抗等。GaN 将在越来越多的国防产品中得到应用,充分体现其在提高功率、缩小体积和简化设计方面的巨大优势。 GaN 领域的企业包括美国的美高森美(Microsemi)、M-A/COM、Qorvo、雷声、诺格、Wolfspeed、Anadigics,荷兰 Ampleon 和恩智浦(NXP),德国 UMS,韩国 RFHIC,日本的三菱(Mitsubishi)和住友(Sumitomo)。(注:科锐Cree2015 年 9月 3 日宣布将把旗下的功率和射频部门更名Wolfspeed)。
据 Yole预测,2016~2020年 GaN 射频器件市场将扩大至目前的 2倍,市场复合年增长率(CAGR)将达到 4%;2020年末,市场规模将扩大至目前的 2.5 倍。2015年,受益于中国 LTE 网络的大规模应用,带来无线基础设施市场的大幅增长,有力地刺激了 GaN 射频产业。2015年末,整个 GaN射频市场规模接近 3亿美元。2017~2018 年,在无线基础设施及国防应用市场需求增长的推动下,GaN 市场会进一步放大,但增速会较 2015年有所放缓。2019~2020 年,5G 网络的实施将接棒推动氮化镓市场增长。我们预计到未来 10年,氮化镓市场将有望超过 30亿美元。
- 博通5G Wi-Fi单芯片解决方案助力室内精准定位技术发展(03-08)
- 2007通信大事年报预报(01-09)
- 移动宽带应不限流量包月 话音已无市场(01-02)
- 无线业预热WiMax (02-27)
- 北美典型3G业务运营进展(02-28)
- 微软与三星等合作挑战诺基亚(04-28)