微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络业界新闻 > 凭啥说5G是物联网关键技术?这四点优势够不够

凭啥说5G是物联网关键技术?这四点优势够不够

时间:09-11 来源:半导体直线距离 点击:

能、太阳能等对 SiC 需求都会快速增长。SiC功率元件市场在 2016年正式形成, 2015 年全球 SiC 功率半导体市场仅为约 2 亿美元,规模尚小,其应用领域也主要在电力供应、太阳能逆变器等领域。而未来,随着新能源汽车和工业电机不断采用 SiC 材料,在未来 10 年的维度内,SiC 半导体市场容量有望超过 20 亿美元。目前全球 SiC 半导体市场处于绝对领先的企业是 Cree,占据了 85%以上的市场份额。

  

SiC 半导体潜在应用领域较为广泛,对新能源汽车、轨道交通、智能电网和电压转换等领域都具有重大意义。随着下游行业对半导体功率器件轻量化、高转换效率、低发热特性需求的持续增加,SiC在功率器件中取代 Si 成为行业发展的必然。据 Yole Developpement 估计,2013~2022 年间 SiC功率半导体市场规模的年均复合增速预计将达到 38%。随着 SiC 产量的快速提升,其生产成本将不断下降, 优异的性能将使得 SiC 在功率器件领域逐步实现对 Si 半导体的替代。

  

碳化硅器件在电动汽车中应用显著。SiC 器件可以显著减小电力电子驱动系统的体积、重量和成本,提高功率密度,使其成为 HEV电力驱动装臵中的理想器件,也必将为电动汽车的动力驱动系统带来革命性的改变。

  

1)可显著减小散热器的体积和成本。理论上,SiC 功率器件可在 175℃结温下工作,因此散热器的体积可以显著减小。SiC 功率器件的高导热性也使风冷在未来的中、大功率电动汽车中成为可能。

  

2) 可以减小功率模块的体积。由于器件电流密度高(如 Infineon 产品可达 700 A/cm2),在相同功率等级下,全 SiC 功率模块 的封装尺寸显著小于 Si IGBT 功率模块。

  

3)可以提高系统效率。与传统硅 IGBT 相比,SiC 器件的导通电阻较小导通损耗下降;特别是 SiC SBDs,具有较小的反向恢复电流,开关损耗大幅降低提高。

  

在国家政策支持下,国内新能源汽车销量快速增长。根据工信部数据显示, 2015 年累计生产新能源汽车 37.90 万辆同比增长 4 倍,销售 33.11 万辆,同比增长 3.4 倍,在全球新能源汽车超过 50 万辆的年销量中,中国市场的贡献超过一半。政策规划 2020 年累计销量达 500 万辆,复合增速 50% 以上:《节能与新能源汽车产业发展规划(2012-2020 年)》指出 2020 年新能源汽车累计销量达到 500 万辆;同时,2015 年国务院下发《中国制造 2025》明确提出到 2020 年我国自主品牌新能源汽车年销量突破 100 万辆,在国内市场占 70%以上,新能源汽车销量达到145 万辆以上。

  

依据产业调研情况,在新能源汽车领域,充电桩需要 SiC 功率器件 6 只,单价在 40-80 元,总价值量为 200-500元;新能源汽车大约需要 SiC功率器件 6只,单价在 40-80,总价值量在 500-1000元。按照 2020年,中国新能源汽车年保有量 500 万量计算,分散式充电桩保有量 480 万个。到 2020 年仅新能源汽车贡献的 SIC 潜在市场空间就超过百亿元。

3.3. GaN:性能更强,半导体材料中的新贵

Ga N 是新一代的宽禁带半导体材料,其禁带宽度几乎是 Si 的 3 倍、Ga As和的 2倍,临界击穿电场比 Si、Ga As大一个数量级,并具有更高的饱和电子迁移率和良好的耐温特性。它具有和 Ga As 几乎相近的频率特性。由于其特有的压电效应与自发极化的存在,它的二维电子气浓度比 Ga As 要高出一个数量级,所以具有很高的电流密度。由于氮化镓具有禁带宽度大、击穿电场高、饱和电子速度大、热导率高、介电常数小、化学性质稳定和抗辐射能力强等优点,成为高温、高频、大功率微波器件的首选材料之一。

  

Al Ga N/Ga N HEMT 具有显著的电子迁移速度。通常 Al Ga N 作为势垒层,Ga N 作为沟道层,Al Ga N 层向 2DEG 层提供电子。因为 Ga N 能量相对要低一些,Al Ga N 层多余的电子会向邻近的禁带较低的 Ga N 层扩散。扩散的电子在它们扩散的反方向上产生一个电场,扩散电子和漂移电子趋于动态平衡,最终产生了类似于 PN 结的一个结构,落在没有掺杂的 Ga N 层上的电子,形成了二维电子气。2DEG 在垂直于异质结方向上会被紧紧限制住,只能在与之平行的方向上自由运动。在 HEMT 中的 2DEG 相比于 MOSFET 和 MESFET 场效应管,最显著的优势是具备更高的电子迁移速度。 Al Ga N/Ga N 这种结构不仅得益于高的电子迁移速度(~2000cm2/V? s),还有高的 2DEG 密度(~1013/cm2)。

  

GaN 器件发展历史:在氮化镓器件研究初期,晶体合成困难。1986 年,日本的赤崎勇开发了"低温堆积缓冲层技术"可以获得用于半导体元件的高品质氮化镓。由于带隙覆盖了更广的光谱范围,用氮化镓制造的高亮度 LED

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top