FPGA同步复位和异步复位的可靠性特点及优缺点
以前从来没有对FPGA的复位可靠性关注过,想当然的认为应该不会有什么问题。当问题真正出在复位上的时候,才又仔细地对FPGA的复位深入的了解了一下。首先我们用的复位管脚不是FPGA的全局管脚,并且复位信号上没有上拉电阻,容易受到干扰而产生毛刺,这对异步复位是相当有害的。其次,我在FPGA内部对复位的处理过于简单。
今天在网上看了一些资料,很多是关于同步和异步复位的优缺点比较。由于我在FPGA内部用的是异步复位,所以主要看了一下异步复位的缺点:1)复位信号在时钟有效沿或其附近释放时,容易使寄存器或触发器进入亚稳态;2)容易受到毛刺的影响;3)难以仿真,难以进行静态时序分析。上面的前两条应该对我来说是影响最重要的,而第三条说老实话,我还没有到哪个阶层(嘿嘿)
FPGA复位的可靠性(同步复位和异步复位)
一、特点:
同步复位:顾名思义,同步复位就是指复位信号只有在时钟上升沿到来时,才能有效。否则,无法完成对系统的复位工作。用Verilog描述如下: always @ (posedge clk) begin
if (!Rst_n)
异步复位:它是指无论时钟沿是否到来,只要复位信号有效,就对系统进行复位。用Verilog描述如下 always @ (posedge clk,negedge Rst_n) begin
if (!Rst_n)
二、各自的优缺点:
1、总的来说,同步复位的优点大概有3条:
a、有利于仿真器的仿真。
b、可以使所设计的系统成为100%的同步时序电路,这便大大有利于时序分析,而且综合出来的fmax一般较高。
c、因为他只有在时钟有效电平到来时才有效,所以可以滤除高于时钟频率的毛刺。 他的缺点也有不少,主要有以下几条:
a、复位信号的有效时长必须大于时钟周期,才能真正被系统识别并完成复位任务。同时还要考虑,诸如:clk skew,组合逻辑路径延时,复位延时等因素。
b、由于大多数的逻辑器件的目标库内的DFF都只有异步复位端口,所以,倘若采用同步复位的话,综合器就会在寄存器的数据输入端口插入组合逻辑,这样就会耗费较多的逻辑资源。 2、对于异步复位来说,他的优点也有三条,都是相对应的: a、大多数目标器件库的dff都有异步复位端口,因此采用异步复位可以节省资源。
b、设计相对简单。
c、异步复位信号识别方便,而且可以很方便的使用FPGA的全局复位端口GSR。
缺点: a、在复位信号释放(release)的时候容易出现问题。具体就是说:倘若复位释放时恰恰在时钟有效沿附近,就很容易使寄存器输出出现亚稳态,从而导致亚稳态。 b、复位信号容易受到毛刺的影响。 三、总结:所以说,一般都推荐使用异步复位,同步释放的方式,而且复位信号低电平有效。这样就可以两全其美了。
异步复位,同步释放——就可以消除上面的前两条缺点。所谓异步复位,同步释放就是在复位信号到来的时候不受时钟信号的同步,而是在复位信号释放的时候受到时钟信号的同步。通过一个复位信号综合器就可以实现异步复位,同步释放。
使用复位信号综合器可以很好地将同步和异步复位的优点结合起来,而消除他们缺点。因此在FPGA/CPLD的逻辑设计中可以很好的提高复位的可靠性,从而保证电路工作的稳定可靠性。re:关于FPGA复位可靠性的一些体会 个人理解,补充一下,其实这里也是用到了用两级触发器来完成异步时钟域转换的问题,对于异步复位信号,它和时钟之间是一个异步的关系,时钟很可能找不到它的上升沿,因此容易造成亚稳态。怎么办呢,用老方法,两级触发器。 第一级,(尽管异步,还是要采集的),采集异步复位信号的高电平,检测到高电平后给出1。(之所以不用这一个结果作为内部的复位信号,就是考虑到1级触发器是不解决问题的,可能就是个亚稳态信号) 第二级,把第一级的结果用clk打一排,这样就避免了亚稳态。 绕来绕去还是亚稳态呀^_^
看看了
不错,亚稳态很基础,但是很容易出问题
学习了。
谢谢分享
0.0.。。
这两者确实有些不理解,学习了!