微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 功率模块在混合动力和电动汽车上的潜在应用

功率模块在混合动力和电动汽车上的潜在应用

时间:08-17 来源:互联网 点击:

中,热分布要均匀得多:这里,igbt的位置也呈现为一个强烈的热源。然而,由于热损耗分布在几个位置上,dcb基板之间的距离更大,拥有更多的空间用于散热。所产生的损耗可有效地消散,减少igbt和二极管之间的相互加热。最佳散热也确保在不同相上的均匀负载分布:功率逆变器三相间的igbt和二极管温度是均匀的,所有三相的igbt平均温度几乎是相同的。igbt之间的最大温差不超过10℃。负载分布均匀,使可用的制冷功率得到最佳利用,从而有利于整个系统的设计。除此之外,每个绝缘dbc陶瓷基板上的温度传感器允许每相单独评估,提供了额外的对运行温度进行控制的可能性。

温度与使用寿命

  对于运行中逆变器的实际热负载,时变负载必须加以考虑。混合动力或电动汽车实际运行过程中,出现不同的负载状态:车辆加速过程中,igbt处于特别高的负载下,而减速过程中,进行能量回收,电机的电池重新充电,这时续流二极管处于最大负载下。为了描述逆变器模块的时变升温,也必须研究功率模块在0.1s~30s负载循环下的行为。对于两种配置,igbt的时变热阻都按照负载脉冲的宽度增加,如图4所示。热量开始从功率半导体沿着散热器的方向流动、扩散,导致整个模块升温。如果负载脉冲持续时间超过30s,模块将被充分加热,热阻不再增加。

 时变热阻值现在可用来计算运行过程中半导体开关和阀上的热负载。要做到这一点,现实的负载周期,正如实际应用中会出现的那样,被用来模拟典型负载状态和负载脉冲宽度。让我们以混合动力汽车驱动周期为例,如图5所示。在最初的启动和加速阶段,能量来自电池并送入电机。在这些加速度阶段,输出功率可达到60kw。igbt的温度按照逆变器的输出升高到95℃。在恒速阶段只需很少的逆变功率,半导体的温度再次下降。在减速阶段,目标尽可能多地回收能量并反馈给电池。此时,igbt和二极管的功耗大致相同,而热量耗散正处于最高值,igbt的温度达到近110℃。

  igbt的最大温升dt=40℃。从模块使用寿命方面来说,这相当于600万次负载循环,如图6所示。可以看出,均匀的温度分布对于逆变器使用寿命和设计来说是多么的重要,如果温度再升高10℃-dt=50℃可能的负载循环次数将降低3倍至200万次。为便于使用寿命设计和半导体的最佳利用,损耗的均匀分布是绝对必要的。

  均匀的温度分布是必须的。10℃的温升使负载循环数降低3倍,20℃的温升能够使使用寿命缩短6倍。

总结

  无基板烧结模块提供一系列增强混合动力和电动汽车逆变器模块可靠性的可能性。由基板所导致的焊接和膨胀不利因素被消除了。优化了的布局保证了运行期间整个功率半导体很大程度上温度均匀分布。这意味着,在预期使用寿命计算中可以平等地考虑三相,从而便于逆变器的设计。逆变器的可靠性得到了明显的改善,即使是在相当大的主动和被动温度波动下。许多不同的无基板烧结模块应用证实了这一点,例如电动汽车和公用车辆中的动力系统以及诸如赛车这样要求苛刻的应用。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top