微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 微波射频行业新闻 > 射频前端:智能手机背后的无名英雄

射频前端:智能手机背后的无名英雄

时间:07-19 来源:IHS Markit 点击:

杂程度,其中最大的影响之一是对接收链路RF元器件,特别是与其他元器件 (如LNA) 一起集成在模组里的滤波和切换开关部分。

不止 Cat 16 LTE:边框更窄,屏幕更大,更好的电池续航

为了在成熟的市场中获得竞争优势,OEM厂商面临着来自产品差异化方面越来越大的压力。在过去几年中,类似调制解调器辅助天线匹配调谐解决方案仅体现于高端智能手机设计领域,目前已在各大OEM厂商设计中司空见惯。天线匹配调谐已成为RF前端的重要零部件之一,减少因环境和设计因素造成的干扰和智能手机RF信号的衰减并提升功率效率。如果没有天线匹配调谐技术,仅简单握住智能手机的动作就能恶化射频信号的质量, 智能手机厂商就得更注重选择不会显著影响RF信号质量的设计。类似Galaxy S8 的智能手机无 (窄) 边框设计需要将天线放置在屏幕下方, 这将对射频信号造成干扰,将天线置于富有挑战性的射频环境。IHS Markit对Galaxy S8+的拆解分析发现该手机同时使用了来自高通QAT3550和QAT3514的阻抗/孔径天线调谐技术, 以充分提高置于屏幕下方的天线性能。通过部署类似调制解调器智能天线调谐技术,OEM厂商可以减小天线尺寸,提高整体电源效率和信号稳定性。

电源效率是智能手机设计师自产品诞生以来一直关注的问题,除了屏幕,RF前端是电池电量消耗最大部分之一。实现尽可能高效的功率放大器逐渐变得越来越重要并产生了广泛的技术应用如封包跟踪。封包跟踪芯片动态调整功放芯片的功率以达到最大的功放效率。高通和Qorvo等公司在其前端套片中提供封包跟踪检测芯片,其他公司如三星也引进了此技术。

在过去,对于ET的限制是它只能在20MHz的带宽上工作,但是在最新的一代产品QET4100上,高通已经能够支持高达40MHz的带宽,这对于在上行线路中有2xCA的手机来说至关重要。通过将上行线路的带宽增加一倍,用户可以上传自己的视频,比如360度虚拟现实视频,在高需求的场馆如体育馆中,速度更快。随着用户生成的内容变得越来越普遍,上行载波聚合将带来更好的用户体验。

平均功率跟踪是另一种用于提高PA效率的技术,但其在许多已有/新增LTE频段所在的较高频率下通常效率较低,在过去5年里,LTE已从多数设备运行的1.9GHz或更低的频段转移到基本上所有高端智能手机都支持的2.1GHz或更高的频段,这对拥有较高频段的移动网络运营商是个利好,例如Sprint在美国有160MHz的2.5GHz(频段41)频谱。然而更高的频率通常无法传播较远且不易穿透建筑物,这就是为什么高性能用户设备(HPUE)正在被部署的原因。HPUE设备能够在更高的功率水平上传输,从而增加设备的可用范围,这种情况下,封包跟踪技术变得至关重要。

实现4G到5G的升级

没有射频前端中几项技术的进步,就没有移动手机上的4G+和5G新无线电(NR)技术的发展。载波聚合的发展,包括支持5xCA的Cat 18 LTE,使全球的运营商更容易利用授权和无授权的频谱,利用许可的辅助接入(LAA)和LTE与无线网络之间的天线共享。此外,下行线路的256 QAM和上行线路的64 QAM等更先进的调制,使得移动设备能够更有效地与网络交互。

4G+的频率范围将扩展至600MHz的低频段和 3.5 GHz的高频段。一些组件供应商已经能够通过硬件支持这些新频段,然后通过未来的软件更新作为支持。一般来说,4G+将对射频前端的接收端构成更大的挑战,因为下游的数据传输速率超过1Gbps,不过,在更宽的频率范围内的额外频段也需要来自传输端的组件支持,例如功率放大器。

IHS Markit预计,到2019年底,5G设备将投入商用,而支持5G技术的举措将进一步给RFFE带来压力。组件供应商将不得不增加对新制式的支持,以及从400MHz到6GHz的更广泛的频带(与移动宽带有关),以及一套额外的编码。如其他核心智能手机ICs如基带一样,RFFE需要提供向后兼容,以支持4G/3G/2G的操作模式。如果没有真正的系统级别的专业知识,当前和即将推出的RFFE将使组件供应商更难以阻止RFFE成为设备移动宽带性能的瓶颈。供应商必须提供完整的组件组合,从而为OEM厂商提供不同程度的性能和灵活性,是以满足终端用户的需求。

作者:Wayne Lam, Brad Shaffer

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top