激光在GaAs晶圆厂表现不
时间:10-23
来源:光电新闻网
点击:
尽管还存在不少问题,美国领先的GaAs晶圆厂已经开始享受使用激光划片系统更换以前的划线-折断设备所带来的好处了。而那些还没有更换使用激光划片工艺的公司能从TriQuint半导体公司的经验中受益。
化合物半导体制造商倾向于在他们引进新工艺和新技术的时候保持低调。不久前在化合物半导体制造技术国际会议(CS Mantech)上,一些技术细节得到了披露,但此时这项工艺可能已经使用了至少一年以上。
今年在芝加哥北郊Wheeling举办的Mantech会议上,TriQuint表示他们已经使用激光划片切割GaAs RFIC晶片有相当长时间了。这在它自身而言并不出人意外,因为在过去几年里,这家俄勒冈州公司及其竞争者都在努力实现这项技术以提高晶片的产量。更令人惊奇的事情,可能是TriQuint在实现激光划片的过程中所遇到的问题。
Travis Abshere为Mantech会议撰写了一篇名为《激光划片的经验总结》的论文。尽管事实证明采用Advanced Laser Separation International (ALSI)公司提供的激光系统非常成功,但工艺的研发和改进过程显然不是一帆风顺的。
改用激光划片的主要动机是提高晶片的产量。TriQuint团队估计,使用激光切割比传统的金刚石工艺能提高5倍的产量,这将为投资带来极具吸引力的回报。激光切割不仅加工速度快,还尽可能地减小了芯片的尺寸、有效地增加每块晶片乃至整个晶圆厂的产量。Abshere表示通过采用激光划片设备,能将晶片上相邻器件的间隔从50祄减小到25祄,这样就能从每批次的加工中得到“额外的”晶片。
在评价该工艺用于实际生产的效果之前,Abshere及其同事提出了他们认为最有可能出现的问题:例如破坏芯片间区域的部分电介质材料,改变了芯片切口的形貌,可能导致芯片开裂等等。
成品率下降
当TriQuint引进激光划片后成品率降低了。这不令人意外,原因很显然,基于GaAs的功率放大器芯片由于引线键合造成了短路失效。最后证实TriQuint的一个转包组装厂(SCA)采用了一种工艺,使得用于芯片间互连的引线下垂并与芯片锯齿形切口边缘暴露的金属短接。Abshere解释说,“使用激光划片的芯片,键合的引线可能下垂并与锯齿形切口边缘的金属接触,从而造成了短路”。
通常这些下垂的引线并不会造成任何问题,因为保护芯片免于划伤的SiN涂层同样会保护金属的切口。但是激光处理工艺会破坏芯片间区域的SiN保护层,而且破坏会一直延伸到金属切口保护层,甚至深入芯片本身。为了避免出现这样的状况,TriQuint有选择性地除去了芯片上的SiN层。然而该工艺导致的金属暴露一直延伸到了金属切口的中心,最终与下垂的金属引线相短接。
ALSI的DCA 802自动激光划片系统事实上已影响了GaAs晶片切割市场。该系统采用的技术最早是由Philips开发的,并与ASML光刻系统具有部分相同的设计。
为了解决这个问题,TriQuint对工艺进行了两项重要的改进。首先,它要求转包组装厂解决引线下垂的问题;其次,要保证SiN涂层覆盖了整个金属切口,另外还要向芯片间区域延伸几个微米。
另一个技术问题是激光切割的缝宽比金刚石切割刀的要窄。更窄的切口意味着需要更小心地处理经过划片工艺后的晶片,以确保上面的芯片不会因为互相摩擦、碰撞而被破坏。一般套环(Hoop ring)能把晶片贴膜绷紧撑开,保证芯片之间的距离。而金刚石切割刀较宽的割缝就不会出现上述问题。
TriQuint所有的三家转包组装厂曾经都有过使用套环的经验,所以工艺改进能进行下去。唯一的问题就是他们在GaAs晶片上都没有使用套环的经验。于是当绷紧的晶片运达时,晶片的套环与他们使用的刀架并不合适,而且他们也不能将晶片边缘的芯片都分拣出来。
经验之二
Abshere说:“我们从中学到的经验是尽快将加工好的晶片交给转包组装厂,但他们都没有6英寸那么小的套环”。解决方案很简单:TiQuint自己更换更大的刀架和套环,但这会增加工艺成本,还拖延了时间。
第三个问题是芯片的开裂,TriQuint在更换使用激光划片工艺之初就已被列为主要的风险之一。引入新的工艺以后,他们开始注意到激光划片的芯片发生了开裂和高失效率。然而,这个问题还是与TriQuint的团队之前预料的情形不太一样。
TriQuint最初的担忧主要是激光形成的切口的形状会开裂。所以在咨询ALSI和其他导入了激光划片工艺的GaAs制造商之后,TriQuint引入了一种腐蚀-清洗的工艺步骤用来强化激光加工后芯片的边缘。
但是事情没完全向计划的方向发展。尽管腐蚀清洗对GaAs晶片的顶部有用,但它并没有强化边缘。因此,芯片开裂是不可避免的结果,而且TriQuint不得不停止所有的激光划片工艺直到将这个问题解决。
化合物半导体制造商倾向于在他们引进新工艺和新技术的时候保持低调。不久前在化合物半导体制造技术国际会议(CS Mantech)上,一些技术细节得到了披露,但此时这项工艺可能已经使用了至少一年以上。
今年在芝加哥北郊Wheeling举办的Mantech会议上,TriQuint表示他们已经使用激光划片切割GaAs RFIC晶片有相当长时间了。这在它自身而言并不出人意外,因为在过去几年里,这家俄勒冈州公司及其竞争者都在努力实现这项技术以提高晶片的产量。更令人惊奇的事情,可能是TriQuint在实现激光划片的过程中所遇到的问题。
Travis Abshere为Mantech会议撰写了一篇名为《激光划片的经验总结》的论文。尽管事实证明采用Advanced Laser Separation International (ALSI)公司提供的激光系统非常成功,但工艺的研发和改进过程显然不是一帆风顺的。
改用激光划片的主要动机是提高晶片的产量。TriQuint团队估计,使用激光切割比传统的金刚石工艺能提高5倍的产量,这将为投资带来极具吸引力的回报。激光切割不仅加工速度快,还尽可能地减小了芯片的尺寸、有效地增加每块晶片乃至整个晶圆厂的产量。Abshere表示通过采用激光划片设备,能将晶片上相邻器件的间隔从50祄减小到25祄,这样就能从每批次的加工中得到“额外的”晶片。
在评价该工艺用于实际生产的效果之前,Abshere及其同事提出了他们认为最有可能出现的问题:例如破坏芯片间区域的部分电介质材料,改变了芯片切口的形貌,可能导致芯片开裂等等。
成品率下降
当TriQuint引进激光划片后成品率降低了。这不令人意外,原因很显然,基于GaAs的功率放大器芯片由于引线键合造成了短路失效。最后证实TriQuint的一个转包组装厂(SCA)采用了一种工艺,使得用于芯片间互连的引线下垂并与芯片锯齿形切口边缘暴露的金属短接。Abshere解释说,“使用激光划片的芯片,键合的引线可能下垂并与锯齿形切口边缘的金属接触,从而造成了短路”。
通常这些下垂的引线并不会造成任何问题,因为保护芯片免于划伤的SiN涂层同样会保护金属的切口。但是激光处理工艺会破坏芯片间区域的SiN保护层,而且破坏会一直延伸到金属切口保护层,甚至深入芯片本身。为了避免出现这样的状况,TriQuint有选择性地除去了芯片上的SiN层。然而该工艺导致的金属暴露一直延伸到了金属切口的中心,最终与下垂的金属引线相短接。
ALSI的DCA 802自动激光划片系统事实上已影响了GaAs晶片切割市场。该系统采用的技术最早是由Philips开发的,并与ASML光刻系统具有部分相同的设计。
为了解决这个问题,TriQuint对工艺进行了两项重要的改进。首先,它要求转包组装厂解决引线下垂的问题;其次,要保证SiN涂层覆盖了整个金属切口,另外还要向芯片间区域延伸几个微米。
另一个技术问题是激光切割的缝宽比金刚石切割刀的要窄。更窄的切口意味着需要更小心地处理经过划片工艺后的晶片,以确保上面的芯片不会因为互相摩擦、碰撞而被破坏。一般套环(Hoop ring)能把晶片贴膜绷紧撑开,保证芯片之间的距离。而金刚石切割刀较宽的割缝就不会出现上述问题。
TriQuint所有的三家转包组装厂曾经都有过使用套环的经验,所以工艺改进能进行下去。唯一的问题就是他们在GaAs晶片上都没有使用套环的经验。于是当绷紧的晶片运达时,晶片的套环与他们使用的刀架并不合适,而且他们也不能将晶片边缘的芯片都分拣出来。
经验之二
Abshere说:“我们从中学到的经验是尽快将加工好的晶片交给转包组装厂,但他们都没有6英寸那么小的套环”。解决方案很简单:TiQuint自己更换更大的刀架和套环,但这会增加工艺成本,还拖延了时间。
第三个问题是芯片的开裂,TriQuint在更换使用激光划片工艺之初就已被列为主要的风险之一。引入新的工艺以后,他们开始注意到激光划片的芯片发生了开裂和高失效率。然而,这个问题还是与TriQuint的团队之前预料的情形不太一样。
TriQuint最初的担忧主要是激光形成的切口的形状会开裂。所以在咨询ALSI和其他导入了激光划片工艺的GaAs制造商之后,TriQuint引入了一种腐蚀-清洗的工艺步骤用来强化激光加工后芯片的边缘。
但是事情没完全向计划的方向发展。尽管腐蚀清洗对GaAs晶片的顶部有用,但它并没有强化边缘。因此,芯片开裂是不可避免的结果,而且TriQuint不得不停止所有的激光划片工艺直到将这个问题解决。
- 美英科学家利用超材料制成高定向太赫兹激光器(08-22)
- 激光操纵磁悬浮石墨烯首次实现(01-04)
- 物理所等在强激光高能量密度物理研究中取得新成果(01-06)
- 我国半导体激光器芯片技术研究获突破(01-18)
- 半导体所在低发散角光子晶体激光器研究方面取得重大进展(03-12)
- 中科院提出大功率孔径积激光雷达数据校正新方法(03-26)