微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > RFIC/MMIC > 用于RF收发器的简单基带处理器

用于RF收发器的简单基带处理器

时间:02-13 来源:ADI公司 点击:

简介

如今,无线系统无处不在,无线设备和服务的数量持续增长。设计完整的RF系统是一项跨学科设计挑战,模拟RF前端是其中最关键的部分。然而,AD9361等集成RF收发器的推出显著减少了此类设计的RF挑战。这些收发器可为模拟RF信号链提供数字接口,允许轻松集成到ASIC或FPGA,进行基带处理。基带处理器(BBP)允许在终端应用和收发器设备之间的数字域中处理用户数据。此外,使用Simulink等系统建模工具可以轻松完成基带处理器设计。然而,新手用户可能会发现难以理解和解决这个通信系统难题。本文尝试为无线传输通信系统设计和实施简单的RF基带处理器。设计使用AD9361 FPGA参考设计框架,在AD-FMCOMMS2-EBZ和Xilinx® ZC706平台上实施。

本文第一部分详细描述该基带处理器的一般设计原则。该部分主要是BBP的理论介绍。在第二部分,使用ADI公司的AD9361FPGA参考设计讨论BBP的实际硬件实施。值得注意的是,主要设计目标是使设计尽可能简单,并在实验室环境中演示快速无线数据传输。在使用和干扰RF频谱时,须考虑到法规及其他影响。

基本设计

典型的RF系统如图1所示,直接RF系统除外。该图1仅显示了单个数据路径,反方向是该数据路径的镜像图像。本文中提出的相关基带处理器允许对数据进行处理,以使其在两个RF系统之间进行无线传输。下文讨论了基本设计要求。

图1. RF系统框图

在两个正交信号I&Q上重复数据

注意,载波相互独立且彼此不同步。因此,发射和接收载波之间存在相位和频率偏移。这将对接收器的解调产生不利影响。一个重要问题是信号反转,正交信号可能会反转其作用,因为偏移会定期合并和漂离。克服这种不确定性的简单方法是在两个正交信号上重复相同数据。

以串行形式发送和接收数据(按位)

大多数情况下,与BBP连接的RF前端接口是DAC和ADC。这些是模拟信号的数字接口。因此,不能简单地将数据发送到DAC输入,并预计在ADC输出端获得相同数据。数据以串行形式发射,将单个位数据映射到DAC的全部分辨率。同样,数据以串行形式接收,从ADC的全部分辨率解映射。这提供了充足的冗余。如果这些是16位转换器,则接收器将从可能的65536数据集中决定1或0。仅这一点,便可以显著简化解码。

I&Q信号相互正交

RF前端设备(如AD9361)是I/Q收发器。如果输入是正交信号,这些设备最有效。这些设备通常沿两个数据路径进行内部I/Q匹配和校正,以抵消二者之间的任何差异。规则是,实部(I)信号是余弦函数,虚部(Q)信号是正弦函数。

调制方案是BPSK

可以部署信号幅度、频率或相位调制的所有常见方法。检测相位差异相对来说更加简单。由于数据以串行形式传输,因此必然会选择二进制相移键控(BPSK)。

位间隔是8个样本

数据需要时序信息,位间隔。可能的最大位间隔是采样周期。为了使接收器保持简单,需要足够的时间来解码信号并做出决定。最简单的时序恢复方法是零交越和峰值检测。在这种情况下,峰值将不一致。因此,选择零交越进行位间隔检测和跟踪。两种系统之间也存在载波差异。在某些情况下,在用户数据的任意端,样本可能模糊不清。为每半个正弦信号留出4个样本,位间隔设置为8个样本。因此,有效的传输速率是采样频率除以8。

数据没有直流成分

时序和相对相位恢复以信号的零交越为基础。因此,单个信号需要不含任何直流成分。此外,要求信号每隔一个位间隔允许至少一个零交越。正弦信号兼具两者的属性,并且非常符合上述BPSK调制方案要求。

数据已加扰

用户数据是任意的很可能是一长串1或0。数据需要加扰,以便在接收器端恢复时序和相位,从而更高效地跟踪信号。

数据以数据包的形式传输

由于系统彼此不同步,因此接收器的信号会存在幅度、频率和相位误差。解调信号是发射信号相对于本地载波发生相位变化的信号。载波可能会跟踪一段时间,选取数据,然后再跟踪。因此,设计需要做好部分数据丢失的准备。为此,数据以数据包的形式传输。可重复传输多个数据包,而非整个数据。

使用CRC验证数据包

数据包携带循环冗余校验(CRC)码,因此如果存在不匹配,则允许接收器丢包,并请求再次发送。

在每个前同步码期间完成时序和相位校正

数据包表头携带前同步码,用于将其从接收到的数据流中划分出来。此外,接收器使用该前同步码复位信号的时序和相位信息,以解调数据包数据。

内置性能指标

接收器也支持统计计数器,如接收到的、丢弃的或校正的数据包数量。这些计数器用于衡量和监控性能指标,包括误码率和有效数据速率。

总而言之,数据作为数据包以串行形式发送和接收。数据包携带前同步码和CRC。数据在收发器设

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top