重新思考快速宽频ADC中的数字下变频
损失。NCO还会额外产生一个小的插入损耗。因此,降频至基带后的输入信号总损耗通常略高于6 dB。NCO允许将输入频谱调谐至DC,这样便可由后续的滤波器模块进行有效滤波,以防止混叠。DDC还可能包含独立控制的数字增益级。增益级让系统实现+6 dB或更高的增益,以在输出位数的整个范围内集中信号的动态范围。
处理器间中断
采用ADC样本抽取后便无需向信号链下游发送最终会被舍弃的无用信息。由于这类数据被滤除,因此降低了ADC后端所需的输出数据带宽。这个减少量被I/Q输出数据量的增加所抵消。例如,具有I和Q数据的16抽取滤波器会使宽带输出数据减少8倍。
数据速率的最小化能减少ADC的JESD204B输出通道数量,进而降低系统布局的复杂性。ADC输出带宽的减小有助于设计小型化系统,否则这是无法实现的。例如,受系统功耗和尺寸的限制,电路板只能使用一个FPGA,对于这种情况,系统所支持的高速串行收发器数量会在不使用DDC时限制ADC的数量。
当系统内只能观察到很窄的带宽时,ADC内的抽取有助于消除这种局限性。使用单个8抽取DDC可将ADC的输出带宽减少至两个输出数据通道,以让赛灵思Artix®-7 FPGA系统支持的ADC数量提高至四倍。对于这种情况,我们利用Artix-7 FPGA 中现有的16GTP 收发器设计出采用DDC的八ADC结构(图2)。这样能更高效使用赛灵思FPGA资源,成为一组FDM通道的多通道数字接收器。
DDC滤波器是否影响SNR和SFDR?
下一个需要研究的问题是当DDC滤波器打开和关闭时,信噪比(SNR)和无杂散动态范围(SFDR) 这两个模拟性能如何变化。
由于转换器的宽带噪声被滤除而且只能观察到较窄的频谱,我们应该看到信号功率与观察到的噪声之比更高。ADC的动态范围在滤波器的通带内应该更好。对宽带频谱进行抽取和滤波的固有优势在于利用DDC改进SNR。
DDC实现的数字滤波用来滤除较窄带以外的噪声。ADC的SNR计算必须包含一个考虑被滤除噪声处理增益的滤波校正因子。使用完美数字滤波器,带宽每减小的2的幂次方,被滤除噪声引起的处理增益将会增加+3 dB:
理想SNR(具有处理增益)=6.02*N + 1.76 dB + 10log10(fs/(2*BW))
使用DDC的一个明显优势是能够使基波信号的谐波落在所需频带的外面。通过适当的频率规划,数字滤波可以防止谐波在窄DDC带宽内看到,从而提高系统的SFDR性能。
在只需要窄带的系统中,DDC通过滤掉宽带噪声来提供ADC处理增益。这样能提高有用带宽内的信噪比。另一个优势是,通过合理的频率规划,通常占主导的第二和第三次谐波会落到调谐后的有用带宽之外并被数字滤除。这能提高系统的SFDR。
采样定理指出谐波或其他高阶系统尖刺可能回折到每个奈奎斯特频带末尾的周围。这对于DDC同样适用,其第二或第三次无用谐波有可能回折到通带内并降低SFDR。因此,为了研究这类采样问题,应该为DDC通带滤波器宽度和NCO调谐位置实施系统频率规划。
是否需要外部滤波器?
使用内部DDC的系统ADC也可以使用附加的模拟滤波器,就像没有DDC滤波时那样。对于宽带系统,DDC能够缓和ADC前端的滤波要求。
DDC中的数字滤波能分担一些工作,否则就要在前端放置严格的防止混叠模拟滤波器。不过,宽频带前端能实现多种用途,可让DDC同时观察多个频带,或者利用NCO扫描有用的频带以找到变化的输入信号。
ADC能否提供多个DDC?
工程师考虑用FPGA实现内部数字下变频时提出的最后一个问题是,ADC是否只提供一个DDC。答案是否定的;事实上可以观察到多个频带。
就ADC中的多个DDC而言,每个都有自己的NCO,用来通过调谐将频带在奈奎斯特区域中分开。这种方法能同时观察多个频带,并减小系统FPGA收发器和抽取模块负荷,以将它们分配给其他处理活动,例如针对FDM系统将多个ADC实现信道化。
高速ADC现已具备足够的处理能力将DDC功能带入信号链。如果系统不需要使用宽频带奈奎斯特率ADC的完整带宽,则可通过DDC滤除不想要的数据和噪声。这样能改善信号采集的SNR和SFDR。较低的带宽能降低FPGA收发器(例如Artix-7)的数据接口负担,并有助于设计更复杂的信号采集系统。
作者:Ian Beavers,Analog Devices公司技术专家
- 用于MAX3580的前端双工滤波器(09-07)
- 用于移动手机的集成式RF功放与滤波器前端(05-11)
- 无需外部SAW滤波器的多模收发器(03-14)
- FBAR 滤波器在下一代无线通信和无线接入产品中的应用(10-06)
- 射频接口芯片低通滤波器的选择(12-12)
- 使用前置滤波器LNA模块改善同步操作GPS的接收器灵敏度(04-16)