微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > RFIC/MMIC > IQ调制、成型滤波及星座映射

IQ调制、成型滤波及星座映射

时间:02-12 来源:互联网 点击:

其核心是两个乘法器。从VCO中出来的高频余弦信号分别做0°和90°的相移,因此产生了cos(wt)和sin(wt),两路正交信号。基带信号通过I/Q两路基带信号进来,分别和cos(wt)和sin(wt)相乘,等效于调整了cos(wt)和sin(wt)的幅度值。最终等效成什么呢?就是控制I-DAC和Q-DAC的输入从而产生不同幅度的电平信号。

所以,最终从基带信号上面如何去控制产生已调信号,就变成了控制DA输出的不同幅度值的信号。因此,要让一个已调信号去表示某个信息,实际上就是把这个信息映射成I/Q两个DAC输出的幅度值。比如前面提到的那个星座图,对于0100这样一个数据实际上就是把它映射成I路的DAC输出3A而Q路上的DAC输出A。那么如何让I-DAC输出为3A而Q-DAC输出为A,这就是和DAC的输入输出特性有关了。比如,这是一个双极性4位的DAC,输入为00时输出为-3A,输入为01时输出为-A,输入为10时输出为A,输入为11时输出为3A。那么就如下图所示

说到这里大家最终发现了,所谓的星座映射,其实就译码器而已……

但是上面那个图,是不对的。原因是什么呢?就是这样直接映射得到的都是方波信号。如果我们把中间的包括IQ调制解调、射频收发的整个过程都等效成一个信道的话,那么可以抽象出这样一个模型:

整个这个图又让我们回到了通信原理一开始就讲的最基本的内容——基带传输。对于基带信号而言,通过信道以后会产生诸多畸变。其中最重要的畸变之一是由于通过一个带限的信道,在频域上可近似等价于和一个门信号相乘,而时域上则等价于和一个Sa信号卷积。如下图所示左边为时域Sa函数,右边为等效低通的门信号:

其结果就是本来应该是脉冲的信号在时域上产生了延拓,也就是拖尾……这样相邻的信号的幅度值就会和这个信号的拖尾叠加发生改变。改变的后果就是原本我们可能在发端映射的是I路3A,Q路A,但在收端却变成了3A-x,和A+y。等效于引入了很大的噪声。好在我们在通信原理中引入了乃奎斯特准则,给出了如果要无码间串扰需要在发端加入成型滤波器,让DA出来的值不是直挺挺的脉冲而是变成了某个形状的波形。而这一过程是在星座映射之后,DA之前。

基带成型滤波器基本流程如下

这样DA出来的波形就是一个类似于余弦样子的波形了。至于为什么这样就没有码间串扰了,公式太多,QQ也写不出来。

最后来说一下接收的问题。从上面的所谓发射的过程就是产生一个有特定幅度和相位的余弦信号的过程。而所谓的接收呢,其实本质就是反过来,是识别这个余弦信号的幅度和相位的过程。这个过程可以有很多办法,我这里还是介绍最常见的IQ正交解调过程。

这个过程本质上来说还是一个三角函数的变换过程。上面说了,有三角函数:

Acos(wt+α)=Acos(α)cos(wt)+Asin(α)sin(wt)

如果要识别A和α,其本质其实上是识别Acos(α)和Asin(α)即可。

而这如何识别呢,考虑Acos(wt+α)*cos(wt)=Acos(α)cos(wt)*cos(wt)+Asin(α)sin(wt)*cos(wt)=1/2*Acos(α)(cos(2wt)+1)+1/2*Asin(α)sin(2wt)。对于这样一个结果,我们很高兴的发现,有一个常数项1*1/2*Acos(α),而另外两个属于是高频项。对于此,任何学过信号与系统的同学都应该明白,只需要用一个低通滤波器就可以把1/2*Acos(α)提取出来。1/2*Asin(α)的提取方法类似。

当然这只是理想的过程,实际中接收机远比这个复杂,信号的识别过程也是有很多花样的。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top