探讨集成LNA在基站设计中的重要性
随着对无线宽频带的需求不断提高,蜂窝基站 (BTS) 性能的重要性也愈加突出。天线塔的低噪声放大器 (LNA)是确定 BTS 性能的关键因素,因为它能影响基站覆盖面积及其对附近其他发射器的容限。集成的 LNA 配备了有源偏置调节器,例如 Avago Technology 的 MGA-63x系列,能够为杰出的 BTS 性能提供噪声系数和线性。
蜂窝基站 (BTS) 设计应具有广泛的覆盖范围,同时能够共用一个配备多种无线发射器的塔站。这些特性使服务供应商用几个网点就能向一个地区提供服务,并且可以与其他使用者共同承担网点成本。为了满足覆盖和分享的要求,BTS 架构中需要配备敏感度高的接收器来接收远程手机信号,同时还要排除从附近无线发射器发射的带内和带外强信号。
接收器的敏感性是多种因素作用的结果,它决定了无线接收器能够还原的最弱的信号,其中包括接收器信号带宽(BW,单位:Hz)和信号必须支持的信息速率。敏感度可以这样描述:
SNR 表示信噪比,该比率必须支持所需的信息速率;F 表示系统的噪声系数。Friiss 公式为:
Gn 表示接收链上第 n 级的增益,表明接收链中第一放大阶段的噪声系数 (F1) 对系统的总噪声具有支配作用,而随后阶段(例如 F2, F3 等)的噪声性能的影响则会越来越小。因此,第一阶段的低噪声放大器 (LNA) 能够通过最小化级联噪声系数 F 来提高接收器的敏感性。
目前蜂窝基站 (BTS) 通常都将 LNA 放置在天线塔的天线附近。这样的布置有助于减弱由天线到远程 LNA 级之间的电缆损耗而造成的噪声系数衰减。还有另外两个影响 BTS 架构的因素,一个是共用天线双工工作的发射-接收 (Tx-Rx) 双工器,一个是用于防止带外阻隔或脱敏的干扰滤波器,通常都先于 LNA 级。但是,双工器和滤波器都会有损耗。因损耗先于放大发生,所以要求损耗值小一些以确保 SNR 尽量高。尽管如此,配备了噪声性能额外冗余的 extra marginNA 还是会降低双工滤波器的损耗要求。
BTS 设计中 LNA 还要满足除低噪声系数之外的其他重要性能要求。这些要求可能包括高增益(用于抵消塔顶安装的 LNA 和地面无线电广播室之间的长电缆的损耗)和高线性。高线性用于防止在处理强信号时可能引起通道间干扰的失真。
放大器设计中的低噪声技术
虽然高增益和高线性非常重要,但 LNA 的噪声系数才是其决定性也是最重要的特征。许多设计和加工技术都会影响放大器的噪声系数 (F),但其中一些并不适用于 BTS。例如,Fukui 公式表明了电子放大器 (TPHY) 的物理温度可以直接影响其噪声系数。因此这种关联,通过目前最有效的降低噪声的方法,即闭合循环氮气冷却,可以将TPHY 降低到接近 OK,并且证明了在900MHz 时 FF ≈ 0.05dB。但是,不断的维护和低温冷却的高成本(每个冷却器约 1 万美元)使这种冷却方法极不实用,除非是类似于无线电望远镜和行星探测器地面接收站这种对于性能要求极高的应用领域。
其他影响放大器系数的主要因素比较容易控制。例如,制造晶体管所选用的半导体材料对放大器噪声系数的影响非常大。尖端材料,例如磷化铟 (InP) 具有无以伦比的降噪性能。但是,对于日常商业用途来说,这些材料的成本往往过于高昂。另一方面,硅 CMOS 虽然成本低廉,但降噪等级却一般(表 1)。而砷化镓材料,尤其是增强型高迁移率晶体管技术 (pHEMT),成本低且降噪性能好。
封装方法也可以影响噪声性能,尤其是 IC 引线和外部配线周围材料中电磁场能量损耗而引起的高频信号衰减。在 70 和 80 年代,低噪声微波放大器一般使用陶瓷封装设备,因为陶瓷封装的损耗极低(耗散因数tan = 0.001)。此外,陶瓷封装支持带状引线,可以匹配 PCB 路径的宽度,从而将断点最小化。为了节省成本,在 90 年代改为使用例如 SOT-23 或 SC-70 的塑料表面贴装 (SMP),这种封装技术极大地降低了噪声性能,因为环氧树脂的损耗较高(tan = 0.006 到 0.014)。另外,芯片黏着和焊丝之间以及引线和微带接口之间的宽度突然改变也增加了反射损耗。
从设备级而言,大多数射频系数 - 包括噪声系数 - 都能通过缩小晶体管的特征尺寸(例如栅极长度)得以改善 。业已证明的是,将 CMOS 的特征尺寸从 0.18m 缩小至 90μm 可以在 1GHz 时有效降低噪音系数 0.2dB。其缺点是制造成本过高。
除了这些设备级技术,还有降低噪声的电路级技术。如在放大器的设计中,往往需要阻抗匹配。但是用于确保最大源信号传入放大器的输入共轭匹配 (ΓS) 和用于确保噪声系数最小的最佳噪声匹配 (Γopt) 之间存在显著差异。在匹配过程中,这种差异通常要求牺
- 使用前置滤波器LNA模块改善同步操作GPS的接收器灵敏度(04-16)
- 用于WLAN应用的2.45GHz LNA的设计(08-20)
- 满足WiMAX基站要求的LDMOS RFIC(01-03)
- 针对基站和卫星通信的高线性度RF前端解决方案(07-10)
- 下一代LTE基站发射机的RF IC集成设计(03-12)
- 基站接收器集成化的进展(01-10)