认知无线电中的宽带频谱感知技术的FPGA实现
的核心部分,高速有效的排序是FCME算法执行的关键技术。在这里我们提出了改进的排序方案,来提高排序系统的速度。因为我们设计的系统框架是通过流水线方式实现的,为了提高时钟速度,我们采用一种新的方案,该方案可以有效地提高速度性能,让排序的平均时间算法复杂度为O(N),排列n个数据需要n个时钟周期,比传统的那些排序算法更有效,而且结构简单易于实现。
该并行排序机制示意图是如下图所示,整个处理单元,它可以用N个时钟周期排列N个数据,D触发器来执行产生的N个周期必要的数据存储和传送, N级级联子模的包括比较器,与非门,D触发器,多路复用器。其中n表示第n子模块,n = 1,..N,输入数据,使能信号。输入数据是串行的,整个排序算法如下:
图十 排序算法实现图
首先,所有的D触发器初始化为最小值。输入数据与队列子模块中D触发器的输出数据进行比较,决定是否使能对应子模块的D触发器。由多路复用器选择数据插入到那一级子模块,同时后面子模块中的数据,依次移入下一级子模块,前面子模块的数据不变。 重复n次使n个数据全部插入其中,从而得到有序的队列。
比较模块实现基于公式(3),我们看出,FCME算法的实现还需要一个比较电路,比较Q(K+1)与前k项的Q(i)和的大小。设计的比较模块如下:
图十一 FCME比较模块
控制电路提供一个初值控制FIFO读取k个信道的能量值,然后通过一个加法电路进行能量求和,将前k个信道的能量和与第k+1个信道能量通过一个比较器进行大小比较。若前者大于后者,说明第k+1个信道为空闲信道,否则继续由控制电路将k值加1,继续进行比较。
项目小结在认知无线电网络中,频谱检测的本质是由认知用户来判断某信道中是否存在授权用户,从而找到可以利用的频谱空穴。同时,认知用户需要通过频谱检测判断授权用户的再次出现,并进行避让,以避免或降低对授权用户的干扰。宽带频谱感知的FPGA实现将解决窄带检测检测效率较低的问题,克服噪声不确定度对检测性能的影响,使宽带频谱检测技术实用化。
- 德州仪器推出具备n因数与串联电阻校正功能的+/-1℃远程与本地温度传感器(09-15)
- 基于FPGA的超声波液体密度传感器(07-05)
- 基于FPGA的司机眼球跟踪疲劳检测报警系统(07-05)
- 智能手机传感器管理,FPGA比AP+MCU方案功耗低10倍(10-11)
- 采用MEMS麦克风实现复杂环境下对特定语音的提取与放大(06-02)
- 多款陀螺仪表头设计、平台测试、系统研究方案及应用实例(06-28)