气体传感器的研究进展
合物也常被用来制成石英谐振式气敏元件。目前已经开发出可测试NH3、SO2、HCl、H2S、醋酸蒸气的石英谐振式气体传感器。
6 表面声波气体传感器
表面声波气体传感器发展的历史很短,可谓是后起之秀。尽管在实用化方面还存在许多问题,但它符合信号系统数字化、集成化、高精度的方向,因此倍受世界上许多国家的高度重视。表面声波传播速度的影响因素很多,例如:环境温度、压力、电磁场、气体性质、固体介质的质量、电导率等。通过选择合适的敏感膜来控制诸多影响因素中的一个因素起主导作用。当质量起主导作用时,表面声波的振荡频率与气体敏感膜的密度成正比;当电导率起主导作用时,表面声波的振荡频率与气体敏感膜的方块电导率成反比。设计时,通常采用双通道延迟线结构来实现对环境温度和压力变化的补偿。目前研究的该类气体传感器大多采用有机膜来做气敏材料,主要有聚异丁烯、氟聚多元醇等,被用来检测苯乙烯和甲苯等有机蒸气;酞菁类聚合物薄膜被用来检测NO2、NH3、CO、SO2等气体。
7 气体传感器的发展方向
气体传感器的研究涉及面广、难度大,属于多学科交叉的研究内容。要切实提高传感器各方面的性能指标需要多学科、多领域研究工作者的协同合作。气敏材料的开发和根据不同原理进行传感器结构的合理设计一直受到研究人员的关注。未来气体传感器的发展也将围绕这两方面展开工作。具体表现如下:
气敏材料的进一步开发一方面寻找新的添加剂对已开发的气敏材料性能进行进一步提高;另一方面充分利用纳米、薄膜等新材料制备技术寻找性能更加优越的气敏材料。
新型气体传感器的开发和设计根据气体与气敏材料可能产生的不同效应设计出新型气体传感器。近年来表面声波气体传感器、光学式气体传感器、石英振子式气体传感器等新型传感器的开发成功进一步开阔了设计者的视野。目前仿生气体传感器也在研究中。
气体传感器传感机理的进一步研究新的气敏材料和新型传感器层出不穷,很有必要在理论上对它们的传感机理进行深度的研究。只有机理明确了,下一步的工作才会少走弯路。
气体传感器的智能化生产和生活日新月异的发展对气体传感器提出了更高的要求,气体传感器智能化是其发展的必由之路。智能气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术、模糊理论等多学科综合技术的基础上得到发展。
仿生气体传感器的迅速发展 警犬的鼻子就是一种灵敏度和选择性都非常好的理想气敏传感器,结合仿生学和传感器技术研究类似狗鼻子的"电子鼻"将是气体传感器发展的重要方向之一。
- SAES、意法合作开发多轴MEMS陀螺仪,力图实现更高灵敏度和稳定性(04-23)
- 赛普拉斯CMOS图像传感器将胶片和数字视频结合用于电影拍摄(11-27)
- 飞思卡尔新建8英寸MEMS生产线,应对迅速增长的市场需要(01-23)
- 气体传感器的发展方向分析(10-26)
- 触控换机潮,半导体厂商攻城略地需讲求策略(05-15)
- Intersil公司入围著名E-Legacy奖医学进步类决赛圈(08-12)