基于OMAP的无线传感网节点处理器的设计与实现
时间:06-24
来源:电子技术应用
点击:
当节点处于各状态时,处理器的主频及任务如下:
(1)节点待机态时,处理器内部ARM核及DSP核处于睡眠状态。
(2)数据采集阶段时,处理器内部的ARM核处于工作状态,FARM=2MHz;DSP核处于睡眠状态。
处理器模块的任务:ARM核将A/D从传感器处采集到的数据读入内部存储区。
(3)数据处理阶段时,处理器中ARM核处于工作状态,FARM=2MHz;DSP核处于工作状态,FDSP=192MHz。
处理器模块的任务:ARM核协议处理,包括组帧、解帧。DSP核的模式识别中待发送的数据量为320bit;图像压缩中待发送的数据量为95Kbit。与通信相关的处理包括调制解调、信道编解码。
(4)数据传送阶段时,处理器内部ARM核处于工作状态FARM=2MHz,DSP核处于睡眠状态。
处理器模块的任务是配合无线收发模块传送数据。
各工作状态耗费电流如表1。
由式(8)知,主导处理器模块功耗为MDSP,所以减小MDSP是减少节点处理器部分功耗最直接的方式。
降低无线收发模块的功耗,需要在信源阶段对数据进行模式识别或压缩,降低数据量以降低数据的传输时间;在选择调制解调方案时,应选择可获得较高数据速率并且所需解调的Eb/N0相对较低的方案。
在进行算法选择时应在完成功能的基础上,选择可以降低功耗的算法。下面针对本节点对算法选择进行分析,先讨论三类算法在节约功耗条件下的复杂度。
模式识别可以处理传感器采集到的信号,给出一个对信号的判断结果,在无线收发时只需要传送这个结果。
经过一次模式识别,数据量可从1K个8位采样点降到1个16位的word。当设发送数据速率为20kbps时,采用BPSK,(2,1,5)卷积编码的方案,发射传输时间由160ms降低到0.8ms。由于实际发送时需要对数据进行组帧,所以传输时间大概为5ms。若以节省功耗为标准,则:
即只要选择的算法低于12M个指令周期就可以节省能量。
模式识别的计算量主要集中在特征值的提取上,比较有代表性的算法的算法。两种算法的运算量与在DSP内处理的时间如表2。 由于在传感网节点中对功耗的要求更为严格,所以选择基于功率谱分析的算法。在实现时利用55核的硬件特性,可降至22K个周期数,1毫秒就可处理完毕。
节点传输图像时必须进行图像压缩,一幅320×240的BMP图像约1.8Mbit,在基本不损失信息的情况下可压缩至95Kbit。Mcompression约为135 290M条指令周期,而对其压缩后,在算法未优化的情况下计算量约为120K条指令周期,远远小于Mcompression。这同时也说明,在传感网节点中传递图像时,主要能耗集中在无线收发模块。此时提高数据速率是必须的,因为提高速率并不会使无线收发模块的功耗上升,却可以减少发送时间以节约能量。
故模式识别与图像压缩是无线传感网节点内必不可少的,算法选择时压缩比是比复杂度更重要的选择依据。
为了在一定的误码率下达到低功率传输,需要采用FEC编码减少差错概率。卷积编码是目前应用最广泛的编码方式,表3为对1Kbit数据采用不同参数的卷积编码时的译码运算量与编码后长度的比较。
分析图4可知,(2,1,7)比(2,1,3)的卷积编码性能提升了2dB以上,而(2,1,9)相比(2,1,7)却只提高了不到1dB。在处理时间上,(2,1,9)即使在程序经过优化后的处理时间为75毫秒,占处理器模块中DSP核处理时间的90%以上。所以选择性能接近但运算量却低很多的(2,1,7)的卷积编码。
传感网的信号经过无线信道时一般不采用高阶调制。在QPSK和BPSK的选择上,由于QPSK可以同时在IQ两路传输数据,使无线收发模块的Tworking减少1/2,从而减少功耗。这样数据的传输速率为40kbps。
各算法耗费时间如表4。
由此可得进行1000次的上述处理所需要的时间及消耗的电流如表5。
(1)节点待机态时,处理器内部ARM核及DSP核处于睡眠状态。
(2)数据采集阶段时,处理器内部的ARM核处于工作状态,FARM=2MHz;DSP核处于睡眠状态。
处理器模块的任务:ARM核将A/D从传感器处采集到的数据读入内部存储区。
(3)数据处理阶段时,处理器中ARM核处于工作状态,FARM=2MHz;DSP核处于工作状态,FDSP=192MHz。
处理器模块的任务:ARM核协议处理,包括组帧、解帧。DSP核的模式识别中待发送的数据量为320bit;图像压缩中待发送的数据量为95Kbit。与通信相关的处理包括调制解调、信道编解码。
(4)数据传送阶段时,处理器内部ARM核处于工作状态FARM=2MHz,DSP核处于睡眠状态。
处理器模块的任务是配合无线收发模块传送数据。
各工作状态耗费电流如表1。
由式(8)知,主导处理器模块功耗为MDSP,所以减小MDSP是减少节点处理器部分功耗最直接的方式。
降低无线收发模块的功耗,需要在信源阶段对数据进行模式识别或压缩,降低数据量以降低数据的传输时间;在选择调制解调方案时,应选择可获得较高数据速率并且所需解调的Eb/N0相对较低的方案。
在进行算法选择时应在完成功能的基础上,选择可以降低功耗的算法。下面针对本节点对算法选择进行分析,先讨论三类算法在节约功耗条件下的复杂度。
模式识别可以处理传感器采集到的信号,给出一个对信号的判断结果,在无线收发时只需要传送这个结果。
经过一次模式识别,数据量可从1K个8位采样点降到1个16位的word。当设发送数据速率为20kbps时,采用BPSK,(2,1,5)卷积编码的方案,发射传输时间由160ms降低到0.8ms。由于实际发送时需要对数据进行组帧,所以传输时间大概为5ms。若以节省功耗为标准,则:
即只要选择的算法低于12M个指令周期就可以节省能量。
模式识别的计算量主要集中在特征值的提取上,比较有代表性的算法的算法。两种算法的运算量与在DSP内处理的时间如表2。 由于在传感网节点中对功耗的要求更为严格,所以选择基于功率谱分析的算法。在实现时利用55核的硬件特性,可降至22K个周期数,1毫秒就可处理完毕。
节点传输图像时必须进行图像压缩,一幅320×240的BMP图像约1.8Mbit,在基本不损失信息的情况下可压缩至95Kbit。Mcompression约为135 290M条指令周期,而对其压缩后,在算法未优化的情况下计算量约为120K条指令周期,远远小于Mcompression。这同时也说明,在传感网节点中传递图像时,主要能耗集中在无线收发模块。此时提高数据速率是必须的,因为提高速率并不会使无线收发模块的功耗上升,却可以减少发送时间以节约能量。
故模式识别与图像压缩是无线传感网节点内必不可少的,算法选择时压缩比是比复杂度更重要的选择依据。
为了在一定的误码率下达到低功率传输,需要采用FEC编码减少差错概率。卷积编码是目前应用最广泛的编码方式,表3为对1Kbit数据采用不同参数的卷积编码时的译码运算量与编码后长度的比较。
分析图4可知,(2,1,7)比(2,1,3)的卷积编码性能提升了2dB以上,而(2,1,9)相比(2,1,7)却只提高了不到1dB。在处理时间上,(2,1,9)即使在程序经过优化后的处理时间为75毫秒,占处理器模块中DSP核处理时间的90%以上。所以选择性能接近但运算量却低很多的(2,1,7)的卷积编码。
传感网的信号经过无线信道时一般不采用高阶调制。在QPSK和BPSK的选择上,由于QPSK可以同时在IQ两路传输数据,使无线收发模块的Tworking减少1/2,从而减少功耗。这样数据的传输速率为40kbps。
各算法耗费时间如表4。
由此可得进行1000次的上述处理所需要的时间及消耗的电流如表5。
通过对比可以看出,本节点处理器模块在处理相同计算量的运算时,所耗费的时间远小于现有的节点,而所消耗的电流也在现有节点中较小。因此证明本节点处理器模块在现有节点中是最适合大数据量处理的。