RF无线模块助力打造机器人群控系统
科技始终来自人性,一语道出科学与技术皆由人类的欲望所生。在讲求经济效益与效率的现代,人类进一步整合计算机与机器,创造机器人以期能够增加工作效率,或是代替人类执行一些具危险性的工作,因此机器人的相关技术研发将会越来越受重视。
本文所开发的机器人作品以盛群半导体八位微控制器(MCU)为核心,具有计程、位置推算、红外线传感避障、中文语音提示、地磁角度测量、地磁角度修正等功能,使用个人计算机(PC)或笔记本电脑(Notebook)当作主控,撰写人机接口主控程序,以射频(RF)无线模块进行沟通,主控计算机可下达指令给机器人并接收机器人的状态回传数据。本文设计的主题是将此机器人群控系统应用于两种机器人队形变换,分别是横纵队形变换跟四角位置队形变换。
主控/受控系统架构搭载RF传输
目前规划的群体机器人队形变换,初步分为两种队形,队形1为多横列与纵列队形的交换,队形2为原本位于四个角落的机器人做位置的变换,虽然两种队形的排程有不小的差异性,但其系统架构是相同的,可分为主控计算机端与受控的群组机器人端(Slave)。
在此群体机器人的动作完全由主控端下达命令而后动作,动作执行完成,随即向主控端回传动作状态;而主控端依据机器人的回传状态,决策群体机器人的动作,其整体的架构模式皆如图1所示,其计算机端的监控接口与受控机器人端的间的通信皆是建立在无线射频通信平台上,并且使用RS-232的通信协议,通过所配置的无线电模块nRF905以无线射频方式进行数据的传输。
图1 系统架构
无线通信满足串行信号传输需求
主控计算机端的无线传输部分,主要是使用RS-232串行传输与无线RF模块的RxD脚位、TxD脚位及共地脚位进行数据传输,主控计算机端有两种方式与无线RF模块进行串行传输,第一种方式(图2),当计算机RS-232传输端口不足时,我们可使用计算机端的通用串行总线(USB)传输埠,经由IC PL2303所设计的USB转RS-232模块,将通过USB协议传输进来的数据,转换为RS-232串行输出信号,再与无线RF模块的RxD脚位进行通信数据传送和TxD脚位进行通信数据接收,只要注意好彼此的传输波特率(Baud Rate)以及相关通信协议是否一致,即可由主控计算机端下达命令至无线RF模块或是接收由无线RF模块回传的信号,进行无线通信传输;第二种方式(图3),当计算机RS-232传输端口足够时,我们使用计算机端的RS-232传输埠,不过基于无线RF模块的信号准位为0伏特(V)或5伏特,而计算机端的RS-232的电压准位为+12伏特或-12伏特,两端的电压准位不一致,所以须使用IC HIN232进行电压准位转换,转换后仍须注意彼此的Baud Rate以及相关通信协议是否一致,才能达成RS-232串行通信传输。
图2 计算机端通信架构-1
图3 计算机端通信架构-2
方向传感提升机器人路径设计精准度
设计群控机器人路径规划系统前(以下简称群控机器人系统),首先将提升小机器人所具备的能力,包含方向传感能力(加入电子罗盘传感地磁角度)、闪避障碍物能力、语音提示能力(具体语音提报功能以告知命令下达者)、机器人行走路径计算能力(行走期望距离或计算出已行走的距离长度),以及动作完成数据回传能力(利于计算机端对机器人群的整体监控)等,使机器人本身的基本功能更符合路径规划的功能要求。
计算机端的监控接口是以一个无线通信模块,对多台机器人下达命令,在此架构下,如何让监控接口可以对群控机器人端的掌握更具便利与灵活性,借以对群控机器人的路径规划带来帮助,本系统将通过对动作命令数据编码的方式,进一步将机器人端的动作规划为单个运动模式、多个运动模式与同步运动模式。
单个运动模式的动作意义为各司其职,假设该台机器人接收到动作要求时,立即执行其动作命令;多个运动模式的动作意义为群体机器人在同一时间点启动并且做相同动作;同步动作模式的动作意义与单个运动模式的意义类似,差异在机器人接收到动作命令时,并不立即执行命令要求,必须等待另一同步启动命令,而后再同时启动并执行该机器人已接收的命令动作。
感光模块/电子罗盘协助判断行径方向
如图4所示,为机器人的整体架构图,环境传感器方面有感光模块与电子罗盘模块,使得机器人具有方向传感的能力,这将为机器人在路径规划上,带来很大的帮助;而计程传感器的Encoder脉波信号精度达到0.185公分的传感单位,提升了路径规划的精确性,另外红外线避障模块可以判断障碍物,以及是否到达棋盘式实验平台的交点。
图4 机器人整体架构
图5为群控机器人系统的人机接口,此监控接口是使用宝兰(Borland)C++ Builder所撰写设计,利用此