微波EDA网,见证研发工程师的成长!
首页 > 射频和无线通信 > 无线通信业界新闻 > 4妙招叫你如何降低LTE系统时延及空口时延

4妙招叫你如何降低LTE系统时延及空口时延

时间:07-06 来源:RF技术社区 点击:

传输时长。例如,将子帧长度 压缩为现有LTE子帧长度的1/4,即0.25ms,如果考虑相应处理时间等比例压缩,具体压缩效果如表1所示,大概可以压缩75%时长。

  表1 时延压缩效果比

另一种方案是以OFDM符号为单位进行数据调度传输,此时,最小数据传输长度为1个OFDM符号,按照现有LTE的OFDM符号长度计算,一个 OFDM符号长度为66.67ηs,如果考虑相应处理时间等比例压缩,具体压缩效果如表2所示,相对于现有1ms的数据传输可以压缩大概92%左右,如果 进一步结合帧结构的修改,如子载波间隔变化,可以进一步降低OFDM符号的长度,实现更低时延压缩。

  表2 时延压缩效果比

另外,增强HARQ反馈也有助于重传时延降低。传统的HARQ只反馈ACK/NAK信息,增强的HARQ可以额外反馈接收的BER估计信息,结 合该信息和信道反状态信息,调度器在进行冗余版本选择、MCS选择等方面可以更有针对性,使数据一次重传后被正确解码的概率大为提高,从而进一步降低数据 传输时延。

数据传输资源请求导致的时延降低

LTE系统中,当终端有数据传输需求时,需要先发送调度请求,基站才能分配资源让终端进行上行数据传输,这一过程导致上行数据传输时延明显大于 下行数据传输时延,如表3所示。另外,发送调度请求配置终端发送数据的资源,也会额外增加时延,因此,如果基站可以预分配资源终端,终端在有数据传输时直 接在预先分配的资源上传输数据,可以减少调度请求过程,从而使得上行数据传输时延与下行数据传输时延相当,这样可以实现上行数据单次传输时延压缩大概 17%,一次重传时延压缩36%,再结合上述数据传输时延降低方案可以进一步降低上行数据传输时延。

  表3 上下行数据传输时延对比

调度时延降低

现有LTE控制信道主要位于子帧的前n个OFDM符号上,或者,与PDSCH频分复用(时长为一个子帧),具体如图3所示,LTE系 统中数据只有解码下行控制信道后才能发送数据,由于控制信道位置限制,导致数据解码时延增大。另外,一个终端对应的下行控制信道区域在一个子帧中只有一 个,如果错过该区域调度,就只能等待下一个调度区域,这就导致数据调度时的等待延迟。为了降低调度时延,需要引入更灵活的下行控制区域设置,如图4所示, 尽量使得有数据传输就有下行控制区域,同时,在解码下行控制信道时数据信道可以提前接收,减少等待接收时间,从而减少由于等待下行控制区域和解码下行控制 信道,以及等待数据接收导致的时延,最终实现数据传输时延的降低。  

  图3 现有LTE系统控制通道和数据通道结构

  图4 灵活的信道结构

处理时延降低

对于处理时延降低,除了通过硬件设备和实现算法降低时延外,也可以考虑通过高级自适应编码来降低处理编解码的时延,比如当SNR比较高时,采用卷积编码,当SNR比较低时,采用Turbo编码等。

本文介绍了降低空口时延技术,通过帧结构压缩和基于OFDM符号调度的方法,以及终端自主调度,可以显著降低空口数据传输时延,另外,通过灵活的控制区域设置和高级自适应编码,进一步可以降低空口时延,从而满足不同业务的需求,提升未来移动通信系统的性能。

后续也可以考虑结合链路自适应优化技术,在保证一定可靠性前提下进行降低数据空口时延研究,以满足超低时延高可靠性的需求,使得移动通信系统具有更广阔的应用场景,提升用户体验。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top