RS232接口转USB接口的通信方法
式。对于低速设备的一个事务,中断传输最大的包容量是8字节,如果需要发送大量的数据,则必须把它分割为很多事务。
转换模块要定义的另一个特性是所需端点数。如上所述,端点是微控制器在USB通信过程中所用来发送和接收数据的缓冲区。此系统中,该转换器定义了2个端点:一个端点(端点0)用来控制传输,另一个端点是中断输入端点,定义为发数据给PC机。
根据以上要求,通过研究比较现有的微控制器,考虑到如内存空间、价格和开发包等因素,我们选用Cypress家族的一种8位RISC微控制器CY7C634XX/5XX。它使用哈佛总线结构,是对较高I/O要求的低速应用设备的低价解决方案。
图2为IC卡门禁考勤系统USB通信实现硬件方框原理图。
3 软件设计和执行
系统软件由6部分组成:定义描述符、设备检测和列举、端点中断服务程序、USB数据交换模块、串行口数据交换模块、USB/Serial模块接口。下面简要描述其中部分模块程序的功能和实现思想。
3.1 描述符定义
描述符是数据结果或信息的格式化块,它可以使主机知道这个设备。每个描述符包含了这个设备整体的信息或者某个元素的信息。所有的USB外设必须响应对标准的USB描述符的请求。
该系统中使用了1个接口和2个终端(控制和中断输入)。由于受Win98的限制还不能使用中断输出终端,因此为了解决这个问题,我们通过在端点0中使用SetReport传输PC机欲送往IC卡门禁考勤设备的数据。
数据接收是在Output Reports中完成的。它根据送往IC卡门禁考勤设备最大的数据量,系统定义为16K个8位域.发送数据给主机是在输入报告中完成的,它是8K个8位域。
3.2 设备检测和列举
当1个USB人机接口类(HID)设备第一次连接到总线,它将被总线供电但仍然非功能性等待1个总线复位。D-端的上拉电阻通知Hub连接上了新的设备,主机也同时知道了新连接的USB设备,并将它复位。紧跟输入包之后,主机发送1个配置包,从缺省地址0处读取设备描述符。读到描述符后,主机将分配一个新的地址给设备,并继续查询关于设备描述、配置描述、人机报告描述的信息,设备将开始对新分配的地址作出反应。根据从设备处返回的信息,主机知道了被设备支持的数据终端的数量,完成列举过程。列举结束后,Windows将把新的设备加入到控制面板的设备管理器中显示。
为此,在微控制器中必须写入访问描述符的代码,这样便于对主机在列举设备时发送的请求作出有效的辨识和响应。在设备方面需要创建一个INF文件,使Windows能够辨识设备,并且为设备找到其驱动。由于操作系统提供了简单的INF文件,因此,开发中只需要编写写入到微控制器中的程序。
3.3 数据发送和接收过程
发送数据到门禁考勤系统是通过控制端点0中使用SetReport来完成的.主机先向门禁考勤系统请求发送数据,设备响应请求后,主机便开始执行。当有数据到达设备的终端0时,将对设备产生一个中断。此时,相应的中断服务程序便将数据复制到数据缓冲区。一旦进入端点0的中断服务程序,所有的中断必须关闭,确保能够正确地复制数据。
微处理器的数据缓冲区编程为可以接收64个字节,这个值是存放在设置包的包头请求信息中。从主机处接收到的最大包大小,是根据它将发送给门禁考勤系统的最大数据量来决定的。
系统还使用了Put_command线程,通过1个I/O端口引脚,向门禁考勤系统串口发送数据。在执行此线程时,根据串口通信协议插入了起始位、停止位以及相应的延时。
从门禁考勤系统接收数据的过程是利用端点1完成的。端点1配置为1个中断输入端点,当有1个起始位到达引脚时,GPIO中断必须打开,并关闭所有其它类型中断。设计中通过使用1个Get_Serial线程来收集I/O引脚发出的串行数据,并把它存入数据缓冲区。同时该线程负责检验接收到的起始位和停止位的正确性。当收到8个字节时,将接收缓冲区中的数据复制到终端1的缓冲区,并且允许微处理器响应中断输入请求。
考虑到一般串行口的有效波特率的范围在300~19200bps,我们按处于最大波特率19200bps的情况来考虑,传输1个字符需要时间接近0.75ms;而1个输入中断大约每10ms送1个8字节的数据包,因此,设计1个128字节的快速数据缓冲区便可以保证不会丢失数据。
RS-232-USB接口转换模块用于改进我们的IC卡门禁考勤系统,使用效果良好。
- 将串行应用移植到USB接口的简便方法(03-15)
- USB接口单片机SL11R的特点及应用(07-10)
- 基于ARM的远距离便携式无线传输系统(08-05)
- 无线收发器CC2531的USB接口设计(03-28)
- 基于TMS320DM6437的McBSP与EDMA实现串口通信(02-09)
- 如何实现(电脑)PC机与单片机AT89C51的串行通信(04-19)