微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 3G无线接入网IP化传送承载方案的研究

3G无线接入网IP化传送承载方案的研究

时间:03-20 来源:中国联通网站 点击:
\

  图3 UTRAN的各种传输解决方案和数据链路层协议封装机理

  3.1 使用城域MSTP承载

  3.1.1 E1接口的传送承载

  IP化的UTRAN网络如果Iub采用E1接口,其内部封装协议要么是IP over Ethernet over GFP over E1(即所谓的EoE),要么就是IP over PPP/HDLC over E1(即所谓的IP E1),当然也可以是IP over ATM over E1(即IMA E1),这时的传输解决方案主要是通过SDH网络进行透传。

  MSTP的接入和汇聚层主要完成NodeB与RNC之间的业务的接入和传送功能。该方案的IP封装传输是基于SDH传输的,本质为基础物理组网,属于封闭网络,安全性高。其缺点是:由于主要使用点到点E1电路来连接RNC和其所辖的所有NodeB的上行E1接口,因此对RNC侧E1接口数量要求很大,而且因为中间没有任何汇聚复用使得其传输效率低。考虑到RNC端口压力问题,在靠近RNC的MSTP汇聚节点使用信道化的STM-1接口,也可以在RNC前配置端口密集的IP路由交换设备实现端口汇聚功能。

  3.1.2 FE接口的传送承载

  IP化的UTRAN网络如果Iub采用FE接口就有多种方式进行承载。如果基站设备距离城域传送网很近。而且城域传送网也提供FE接口,那么首先可以考虑采用最简单的FE接口透传方式。这时主要是使用城域MSTP网络的以太网传送处理能力,缺点同上,也是对RNC的FE接口数量要求大,传输效率低。

  在城域传送网中除了在MSTP设备中提供以太网处理板卡来汇聚交换FE业务外,还可以使用MSTP内嵌弹性分组环(RPR)技术以同时提供SDH环网的保护机制和对数据业务的弹性共享机制。例如在接入层使用MSTP组建环网,提供部分带宽兼容原有接入的2G和3G基站的语音业务。并对业务提供基于VC-12的低阶通道保护。其他剩余的带宽组建内嵌RPR环接入FE高速数据业务。当业务进入后,可根据IEEE802.1p对业务进行分类,然后通过IEEE 802.17 RPR定义的A/B/C业务类型进行分类,根据业务需要的QoS实现不同等级的传送,实现不同业务的QoS。

  3.1.3 由下一代分组传送网络提供承载

  MSTP技术的发展过程,也就是对数据业务的种类和组网不断丰富和完善的过程。随着TDM业务的极度萎缩以及"全IP环境"的逐渐成熟,传送设备要从"多业务的接口适应性"转变为"多业务的内核适应性",而分组传送网正迎合了这种趋势。

  下一代基于MPLS的分组传送网是利用MPLS的帧格式、基本机制(如标签栈)和转发规则,而适用于传送网的一种面向连接的分组传送技术的设备组成如图4所示。它将业务处理和业务交换相互分离,将与技术相关的各种业务处理功能放置在不同的线卡上,而与技术无关的业务交换功能放置在通用交换板上。采用通用交换板,运营商可以根据不同业务需求灵活配置容量,仅通过更换不同的线卡就可实现。因此这种设备更加适合3G UTRAN的IP化承载的需要,可以根据IP UTRAN的不同接口灵活配置承载传送方式。

\

  图4 下一代分组传送网设备的原理结构

  ITU-T定义分组传送网是在终端实体之间提供传输用户分组数据的功能,以及控制和管理承载数据的传送资源的功能。分组传送网采用遵照ITU-T建议G.805和G.809的面向连接的分组交换(CO-PS)以及面向无连接分组交换(CL-PS)技术。

  基于MPLS的分组传送网系列标准主要规范了传送网传送MPLS承载的业务,G.8110.1在G.811O的框架内进一步发展了比较完整的基于MPLS分组交换为核心的传送网。G.8112描述了MPLS传送网结构、复用/映射、物理层接口。G.8121描述了设备的业务处理流程和适配以及连续性、连通性、维护信号、缺陷、性能的监视和处理。采用分组传送网的主要优点在于:通过在统一的分组转发平面中承载不同的业务,简化了网络管理和维护,提高了业务汇聚的能力。ITU-T SG15/SG13在这两个方面的标准建设上都取得了阶段性的进展。

  3.2 使用宽带城域数据网提供承载

  3.2.1 采用IP网来承载传送FE

  对于宽带IP城域数据网建设到位的3G运营商,数据业务由城域数据网汇聚承载是顺理成章的解决方案。这时,如果UTRAN直接利用IP城域网的接入层和汇聚层设备,实际上和公网有直接和潜在的互联通道,存在一定程度的安全隐患。为了与其他城域数据网业务隔离,必须采用基于MPLS VPN技术的城域数据网,需启用接纳控制和严格的QoS机制(DiffServ)来保证业务。考虑到要满足业务50 ms的电信级保护,路由器需要快速重路由技术才能实现,这时设备的投入成本相对来说较高。

  如果不要求路由器具备VPN功能,那就要实现专网专用,提供UTRAN承载的路由器不能和城域网中其他业务共享设备,路由器需要启用DSCP功能以支持信令、CS、PS业务的区分对待。

  3.2.2 通过以太网承载传送FE

  当数据带宽需求增加时,以太网将成为一种非常普及、经济、高效的解决方案。正如以太网和快速以太网在用户桌面和局域网的普及一样,吉比特以太网(GE)设备的价格相信也将会迅速下降。使得光纤以太网从核心层扩展到"最后一公里"变得非常容易。FE接口在xDSL铜线或"黑光纤"(dark fiber)上传输的Ethernet over copper和Ethernet over dark fiber,或Ethernet over LMDS以及WiMax(802.16d)上承载高速数据业务在"最后一公里"都具有很高的经济性,而IP则是以太网上最适合的网络层协议。因此也可以用2/3层以太网交换机通过光纤直驱实现WCDMA R5版本IP接口的连接。

  该方案对边缘层设备端口占用量大,星型组网需占用和浪费大量光纤(特别是双归组网)。网络扩展性差(扩容时需改现有网络结构),结构层次多,管理维护较困难。由于没有基于环的快速保护机制,采用生成树保护方案,保护时间为秒级。时间较长,不满足语音业务应用需求,无法提供故障定位、性能监测和保护功能。因此其作为一种非运营级的解决方案很少被运营商采用。

  4、结束语

  3GPP在R5标准中,虽然引入了IP传输选项,但对于所有的无线运营商而言,是否选择向IP传输演进,主要应从自己网络现状和经济性角度进行分析。虽然IP化UTRAN符合技术演进趋势,但是在窄带链路上IP效率很低,虽然可以通过PPP multilink multiclass(MLMC)和包头压缩等措施进行改善,但由于Iub接口上严格的QoS要求,仍然需要很大的配置余量。对于低容量基站或覆盖型基站,ATM仍然是最好的选择,在窄带链路上,其带宽效率和QoS保障更高。考虑到NodeB接口和承载方式的多样性需求,电路(E1)/分组(ATM)/分组(IP)将长期并存,分路传送方式将是一种很好的选择,因此NodeB和RNC产品应在传输技术的选择和协议栈的支持方面具有足够的灵活性,避免投资浪费。

  随着3G业务的逐步增加,网络的业务内容和节点功能也水涨船高,这无疑给传输网络提出了很高的要求,MSTP恰恰满足了这种需求,它以丰富的业务接口和处理能力为运营商提供了高效的传输方案,很好地适应了3G技术的无缝演进。

  3G网络在不同的阶段中以TDM、ATM、IP技术为平台。并在网络的演进过程中不断发展和变化,因此在传输网络的构建过程中,需要传输网具有从窄带到宽带的多业务传输能力,支持和适应各种承载方式。正是3G的不断演进和新业务的发展,对MSTP提出了既能够保留电路业务高质量的优点又能提供完全的数据扩展能力的新要求,要求下一代传送网要为基于IP的业务提供更加有效的传送。

  在网络融合浪潮中"业务IP化,传送分组化"趋势十分明显,但是必须明白:无论技术如何发展(电路化或分组化),对网络的高效快速传送、可靠安全、简便的管理等基本需求仍是我们永远的追求。即便在完全的IP网络时代,运营商仍然要求实现每比特最低成本的业务传送和汇聚,而且需要满足相应的传送距离要求,而下一代分组传送网正迎合了这种趋势,必将拥有更加美好的未来。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top