3G无线接入网IP化传送承载方案的研究
有可能大量应用的链路是像NxE1/T1这样的低带宽链路。为了提高窄带链路的传送效率,要求UTRAN节点应支持PPP、IP头压缩、多链路以及多业务类别等新技术。
PPP是点到点协议的简称,它可将长IP包切成短包组成PPP帧,提供多协议封装、差错控制和链路初始化控制的特性,而HDLC通过字节填充来实现PPP帧的定界。那么在窄带传送中为什么要使用PPP multiplexing技术呢?由于语音分组包长度很短,而短包的头开销相对较大,因此需要将大量的短包合并起来以增加链路的传送效率,而且合并时还可以消除重复的多余的PPP包头信息,对于像语音分组那样的短分组而言,PPP multiplexing是一个优化的链路层协议。参照协议3GPP R5 TS25.426要求作为可选项。
为什么要进行IP/UDP包头压缩呢?由于无线语音分组包的长度通常比IP/UDP头的分组包长度要短。例如无线语音分组包长度为20 byte时IP/UDP头的分组包长度却要高达28 byte,因此如果在低速链路(如E1)上传送这样的分组数据而不采用头压缩技术将不是一种高效率的传送方案。通常对任何一个给定的数据流,每个包头中的许多域都是固定不变的,或者相对于后续包头来说也是不变的。因此完全可以使用包头压缩技术来缩短包头长度,以提高链路的传送效率。典型情况下,28 byte长度的包头可压缩到2 byte以内(参照协议3GPP R5 TS25.426要求)。
MP用于分组的分段重装和E1/T1链路绑定,可以成倍地提高传输速率。MC用于对业务分类,防止长分组、时延要求低的业务(如数据)对短分组、时延要求严格的业务(如语音1的影响。MC-MP/PPP提供了低带宽链路上的反向复用、分组分段和重装及QoS。可参照协议3GPP R5 TS25.426要求,主要是保障时延特性满足要求。
ATM分组传送是R99和R4版本主要使用的传统方式,用ATM分组封装IP包具有QoS质量保证和高效率等特点,主要不足是处理复杂。随着以太网的普及和城域传送网的大规模建设,采用GFP(通用成帧规程)/VCAT(虚级联)/LCAS(链路容量动态调整策略)技术的城域多业务传送平台(MSTP)被广泛应用。GFP/VCAT/LCAS不仅具有带宽动态调整功能,而且使SDH网络更加健壮,相反ML-PPP组中一个成员的故障就会导致整个ML-PPP组的传送失败。另外GFP/VCAT具有差分时延纠正功能,不会对时延敏感业务引入时延,而ML-PPP协议需要对每一个片段进行缓存重排;全球统一标准的GFP/VCAT与SONET/SDH的广泛应用使得IP UTRAN无线设备与城域传送网MSTP设备的互联互通非常容易。
因此,对于UTRAN的IP传送策略建议如下。
●在宽带网络中,如有SDH(STM-1/STM-4)接口,可采用传统PoS,不需提供UDP/IP头压缩,更不必提供PPP multiplexing,从而可以降低系统复杂性和成本,减小分组时延。
●在窄带链路上,如N×E1/T1接口,采用cUDP/IP/MC-MP技术,而PPP multiplexing最好作为优化选项,由运营商根据市场情况确定。
●针对高速数据传送可采用分路传送,由以太网(100BASE-TX/100BASE-FX)接口提供HSDPA数据传送或用于连接较近或同一位置的网络设备(如RNC、NodeB),也可提供网络管理与维护(OAM)。
最好是以上接口按模块化方法实现,根据运营商的不同要求选择以上不同接口的组合。
2.3 TDMoIP技术
尽管3G网络的发展就是不断增强对高速数据的支撑能力,但语音业务依然是其生存的根本,而且E1类电路还将长期存在,因此在IP化浪潮下如何高效支撑语音业务仍是至关重要的大事。对于以数据业务或其增值业务为主的新兴运营商来说,由于他们有完善的宽带IP网络,那么如何在IP网络上透明地传送E1电路就显得尤为重要,这时使用一种新技术TDMoIP(time division multiplexing over internet protocol)就可达到这个目的。
TDMoIP的工作原理是E1同步比特流被打成包,再加上IP头,封装成IP数据包,通过IP网络把这些数据包传输到目的地,目的地重新生成同步时钟信号。去掉数据包中的IP头,把其中的数据转化成E1同步比特流发送出去。采用TDMoIP技术能够在包交换网络IP/Ethernet/MPLS上实现E1/T1电路的透传,提供高密度的E1接口、高语音压缩比以及先进的压缩功能和算法,同时融入了语音状态检测(voice activity detection)、静音抑制(silence suppression)和舒适噪音产生(comfort noise generation)等技术。
TDMoIP技术为了高效传送语音,采用了相应的行业标准,如G.723.1、G.729A和G.711的压缩算法,主要是基于静音抑制技术。静音抑制实际上可以理解为在静默时切断传输,即当用户没有通话时,不传送静默的信号。对于中继线路,采用此项技术可以节省60%的带宽,当然这主要与静音所占的比例有关。
2.4 IP UTRAN的同步
当采用基于IP包交换的传输网络时,时钟恢复和同步是面临的主要技术挑战。
IP UTRAN获取时钟主要有3种途径:TDM电路和网络、本地设置GPS时钟源和基于分组网络的时钟分配和时钟恢复算法。
如果NodeB支持IP/PPP over E1/T1仍然通过E1/T1/Ch STM-1接口上传输网,这时同步时钟仍然可从线路获取,在宏蜂窝站点推荐使用该方案。如果NodeB采用分路传输,同时具备E1/T1、FE或DSL接口,这时同步时钟仍然可从E1/T1线路获取,在室内覆盖站点推荐使用该方案。当NodeB只有FE接口时,可配置GPS接收机来提供时钟信号,推荐在大流量站点,并且IP路由比较复杂的情况下使用该方式。如果NodeB只有FE(或DSL)接口,而且不允许、不经济或者是不方便安装GPS接收机,比如home NodeB、地下室NodeB,这时应遵循IEEE1588,采用时间包机制(timestamp)在NodeB恢复时钟,这种方案还在研究状态。该方案目前仅适合于中间路由节点较少、抖动小的网络情况下使用。
2.5 IP UTRAN的分路传输技术
随着HSDPA业务的引入。单站点的数据业务流量会较大增加。如果Iub采用E1/T1接口,大量突发的HSDPA业务流量会影响语音业务的性能。目前大部分运营商初期建网仍然采用E1/T1作为Iub接口的主要承载介质,HSDPA业务的引入对于E1/T1接口数量扩容的需求大大增加,如果仍然采用E1/T1接口扩容,相应的成本很高,这时就可考虑将语音业务的传送和承载与高速数据业务区分开来,进行分路传输。
Iub接口在承载RNC和NodeB之间的流量时,按照不同的业务分类。分配不同的物理承载介质和带宽。由于HSDPA峰值流量大,峰均比动态范围大,突发性强,适合在FE等高速接口传输。接入层传输采用以太网交换、RPR分组环等技术,提高统计复用带宽增益。信令、语音以及操作维护等对实时性要求较高的业务仍然在E1/T1链路上传输。
2.6 IP UTRAN安全策略
3GPP标准工作组定义R5的IP UTRAN为一个封闭的网络。所谓封闭的网络就是本运营商的WCDMA网络之外的其他网络和外部网络用户不能访问IP UTRAN的任何物理接口和传输链路,这样就能减少来自于其他业务网络的安全威胁。在全IP情况下,Iub接口的操作维护采用IP in IP的隧道方式,对外隐藏内部的网络拓扑结构。
因此要求在实际组网时,Iub、Iur以及Iu接口采用单独的传输设备和数据设备互联,断绝外部网络和非法用户接入的物理通道。如果要和其他网络共用传输设备和数据设备互联。需要考虑采用划分VPN方式隔断外部网络的流量和接口;必要的情况下需要增加单独的接入服务器,完成数据的完整性检测(比如IPSec机制),甚至完成数据加密。
2.7 IP UTRAN服务质量
QoS直接影响用户对网络及服务的评价,实现业务的QoS目标关键在于承载网络所能提供的QoS能力。
(1)PPP机制下的QoS
在低速链路E1/T1以及信道化STM-1承载PPP协议时,可以得到和IMA/ATM协议相同的服务质量。
●使用ML-PPP/MC-PPP提供QoS业务分类机制;
●通过不同的QoS分类和调度器来保障时延,而且对IP长包的分片重组机制能很好地消除对于时延的影响。
●通过不同的队列、带宽测量器和调度器来保障带宽。
●IP头压缩可将UDP/IP产生的开销从28 byte降低到2-3 byte,极大地减小短分组传送的开销,提高了带宽效率。
●MP实现多个E1/T1物理链路的绑定,可以成倍地提高传输速率,同时在少数E1/T1物理链路故障情况下,实现负荷分担机制,保障可靠性。
(2)DiffServ结合MPLS交换
NodeB和RNC均支持DiffServ,具备合理的QoS映射方案。遵循RFC2474和RFC2475,要求NodeB与RNC相互协调,整个IP UTRAN节点使用统一的QoS映射机制。NodeB和RNC之间的MPLS交换机和路由器根据IP包中DSCP标识决定处理策略,选择合适的转发路径。参照协议3GPP R5 TS25.426要求,主要是平衡各类业务的综合性能,如时延、丢包率等指标。
(3)以太网的QoS
基于802.1p可以实现流量汇聚和基于业务QoS调度的机制,性能可得到保障。UTRAN统一策略和传输网结合考虑,完成UTRAN QoS和CoS的一致性映射。
3、IP UTRAN的传输承载解决方案
3G网络在不同的阶段分别以TDM、ATM、IP技术为平台,并在网络的演进过程中不断发展和变化,因此在传输网络的构建过程中,需要传输网具有从窄带到宽带的多业务传输能力,支持和适应各种承载方式。目前3GPP给出的UTRAN必备(强制)的第一层协议均基于PDH/SDH,因此在NodeB侧,主要会采用SDH(STM-1/STM-4)的POS接口和E1接口。但由于以太网技术在互联网中的应用日益广泛和HSDPA的高速下行速率业务的应用,FE接口和以太网传送技术将越来越普及。
根据UTRAN网络设备所处的位置和城域网发展现状,IP UTRAN可以使用城
域传送网的MSTP设备和宽带IP城域数据网的路由器或以太网交换机设备来为3G无线接入网提供承载和传送功能,如图3所示。
- 3G LTE简介(01-30)
- 3GPP LTE/SAE网络体系结构和标准化进展(04-14)
- WiMAX技术优势如何成就市场(08-23)
- 3G室内分布系统分析(08-19)
- 宋俊德:3G不可能等WiMAX成熟后再上马(08-23)
- 宋俊德:3G与WIMAX竞争中融合 终端内容趋同(08-23)