微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 在光电流应用中补偿电流反馈放大器

在光电流应用中补偿电流反馈放大器

时间:03-30 来源:ADI 点击:

添加一个反馈电容(题外话)
带有单极点传递函数(如等式3所示)的CFA在任何反馈电阻值下都表现稳定,因为其反馈环路周围的迟滞相移被限制为–90°。但实际CFA的次要极点在高频下会带来较大的相移迟滞,因此,为了确保稳定性,实际会对RF的最小值做出限制(45°一般是可接受的最小相位裕量)。此后,Z(s)将包含一个高频极点 s = pH和一个主极点 s = p

为了确保反馈阻抗不变成零,通常建议在任何CFA电路中都不应使用反馈电容。然而,事情并非如此简单,因为在幅度变化以外,反馈电容还会导致相移。本节将考察将一个反馈电容添加至基于CFA的TIA时产生的结果,暂且忽略寄生输入电容。在图2所示电路中,在反馈电阻RF上跨接一个反馈电容CF,结果形成一个极点,并在环路增益中产生一个零。ZF 定义为RF和CF的并联结果:

(8)

如果以ZF取代等式2中的RF ,则闭环增益可表示为等式9。

(9)

此时,环路增益为

(10)

环路增益有一个来自Z(s)的主极点 s = p 和一个高频极点 s = pH 。另外,受增加的反馈电容的影响,在 时形成一个极点,在 时产生一个零。

在波特图中,CF 导致的零产生时的频率低于CF 导致的极点,因为零频率表达式的分母中含有 RF ,而极点频率表达式的分母中则含有(Ro||RF)。一种基于CFA的可能TIA(含CF(等式10))的波特图如图4所示。

图4. 基于CFA的TIA(含反馈)的波特图

随着频率的增加,零会导致幅度不断提高,相移不断加大,从稳定性角度来看,在某些情况下,这可能是一件好事。但在图4所示系统中,零出现在环路增益跨过0 dB之处,而pH下的极点则在跨交越点–40 dB/十倍频程时导致幅度渐近线下降。蓝色虚线表示不含CF的环路增益,采用的是等式2以及双极点版本的Z(s)(见等式11)。

(11)

F图4表明,当无CF 时,放大器表现稳定,但在添加CF 之后,则会产生稳定性问题。图4中的坐标图并不完全排除反馈电容的使用,因为该特定Z(s)并不代表所有CFA,而且未使用实际电阻和电容值;尽管如此, 图中确实表明,高频极点会限制可以安全应用的反馈电容。图4同时表明,可以向一个带单极点传递函数的假想CFA安全添加任意量的反馈电容,而添加反馈电容 会增加其闭环带宽。

使用CF导致的零抵销寄生电容导致的极点
以上简要介绍了向CFA添加CF 产生的影响,从中可以看出,可以安全使用CF 来补偿输入电流源的寄生分流电容。

图3所示电路的闭环增益表示为等式6。为了厘清添加反馈电容对该电路的影响,可用ZF 取代等式6中的RF ,与推导等式9的方法相似,其中,ZF由等式8定义。电路如图5所示。

图5. 基于实用CFA的TIA(用CF 补偿寄生电容)

图5所示电路的闭环增益可通过等式12求得:

(12)

根据该等式,可以算出环路增益为

                                  

(13)

等式13中,因CF导致的零与等式10中的零相同,但CF 导致的极点则从 移到了

通过向 CF 添加C,可以移动极点位置,以匹配零的位置,从而抵销掉输入电流源的寄生电容C导致的极点。在等式13中,将CF 和C导致的极点频率设为因CF导致的零频率,则得到等式14:

(14)

等式14所示为计算CF的值的简单公式,该值可抵销图5所示TIA中的寄生电容C导致的环路增益中的极点。以这种方式将极点零完美抵销之后,环路增益会回归最初形式,含有主极点和高频极点,如等式11所示。至此,闭环增益可以表示为等式15。

(15)

在使用等式14时,遇到的主要困难是确定Ro,该值是可变的,而且CFA数据手册中未必提供其额定值。然而,只要环路增益图的斜率在通过0dB时合理接近–20 dB/十倍频程,则极点-零抵销无需如此精确。等式14表明,CF 随 Ro 线性递减,因为随着 Ro 接近0,自举发生次数会增加,其中,C完全自举,所需 CF 等于0。等式14也可表示为一种匹配时间常数形式,如 RoC = RFCF。等式14的匹配时间常数形式与对VFA进行寄生求和节点电容补偿时获得的结果非常相似: RGCG = RFCFRFCF,其中 RG 为VFA增益电阻,CG 为 RG的交越电容,该电容一般为寄生求和节点电容。然而,获得这种优势是需要付出代价的。虽然添加CF 可使TIA变稳定,但同时也会在时在闭环增益中导致一个极点,如等式12和等式15所示。等式15所描述的闭环增益可以视为传递函数相乘的两个级联系统。第一个系统的传递函数为等式15中最左侧的因子,维度为欧姆。第二个系统的传递函数为等式15中最右侧的因子,无维度。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top