一种高增益CMOS全差分运算放大器的设计
摘要:设计了一种用在高精度音频Σ-Δ A/D转换器中的高增益CMOS全差分运算放大器。该运算放大器采用了套筒式共源共栅结构和开关电容共模反馈电路。通过分析和优化电路性能参数,实现了高增益和低功耗。采用SMIC 0.35 μm CMOS工艺,经Spectre仿真验证,电路在3.3 V电源电压和2.6 pF负载电容条件下,单位增益带宽为110 MHz,开环直流电压增益达76 dB,功耗为1.4 mW。
1 引言
运算放大器作为模拟系统和混合信号系统中的一个重要电路单元,广泛应用于数/模与模/ 数转换器、有源滤波器、波形发生器和视频放大器等各种电路中。伴随着每一代CMOS 工艺 的发展,电源电压和晶体管沟道长度的持续减小,不断为运算放大器的设计提出了复杂的课 题[1-3]。在A/D 转换器中,运算放大器是最关键的部件。比如,有限增益、带宽和有限压摆率 等运算放大器的非理想特性都会造成积分器中的电荷转移不完全,从而引起A/D 转换器的非 线性[4]。与单端输出的运算放大器相比,全差分运算放大器能提供更大的输出电压摆幅,并具 有不易受共模噪声影响、更高的线性度、减少偶次谐波干扰以及偏置电路更简单等优点[2]。
本文从分析和优化运算放大器的参数出发,实现了一款高性能CMOS 全差分运算放大器 的设计,其主要性能指标要求为:开环增益大于70dB,单位增益带宽大于80 MHz,转换速 率大于160 V/μs。
2 高增益CMOS 全差分运算放大器设计
2.1 结构选择与分析
常见的全差分运算放大器的结构有套筒式共源共栅、折叠式共源共栅和两级运放等。在 两级运放结构中,次极点频率由负载电容CL 决定,使速度受到限制,带宽较小,且功耗较 大,电源抑制比和共模抑制比也较差。与套筒式结构相比,折叠式共源共栅运放的输出电压 摆幅要大一些,但这是以较大的功耗和噪声、较低的电压增益和极点频率为代价得到的[2]。套 筒式共源共栅是各种不同运放结构*耗最低的一种,其增益也较高,可和普通的两级运放 相比。从本设计的应用出发,决定采用套筒式共源共栅结构来设计全差分运算放大器。
2.2 套筒式共源共栅运算放大器
采用的套筒式共源共栅运算放大器主体结构如图1 所示。其中,M1、M2、M3 和M4 组成有源负载,其阻值很大,可提高运算放大器的增益。M7 和M8 是NMOS 差分输入对,用 于把输入电压变为电流;M7、M8 和M5、M6 一起组成差分式共源共栅结构。M9 用来产生 尾电流以抑制输入共模电平的变化对M7 和M8 的工作及输出电平的影响。Vb1、Vb2 和Vb3 为 三个偏置电压,VCMFB 为共模反馈电路产生的控制电压。
2.3 共模反馈电路
全差分运算放大器中通常需要一个共模反馈电路(CMFB),使受控的共模输出电压值接近 于某个特定值(通常约为电源电压的一半)[4]。CMFB 分连续时间和开关电容两种。由于本文设 计的运放用在全差分开关电容电路中,加之连续时间CMFB 具有限制差模输出信号幅度、增 加差模负载和增加静态功耗等缺点[5-6],因此采用开关电容CMFB,其实际结构如图2 所示。
图2 中的C1=C2,C3=C4,clk1 和clk2 为两相不交叠时钟信号,Vo-和Vo+接运放输出电 压,VCMFB 为该CMFB 产生的调节电压,Vcmref 代表期望的输出共模电压,Vbias 是使运放输出 共模电压刚好等于期望值时的电流源栅极偏压。当clk2 为高电平时,C3 和C4 预充电到 Vcmref-Vbias。当clk1 为高电平时,C1 和C3 并联,C2 和C4 并联,存储在C3 和C4 上的电荷 将发生转移,最终在C1 与C2 之间产生一个DC 补偿电压,叠加到运放的输出共模电压上, 从而保证运算放大器实际输出共模电压保持在预期值附近。
3 电路参数分析
在图 1 所示的电路中,由于两条支路对称,所以当输入差模交流信号时,M9 的漏极电位 保持恒定,于是可认为M9 的漏极交流接地,由此得到图1 的单边交流信号等效电路,如图3 所示。
3.1 开环直流增益
如图3 所示,单边增益等于输入管的跨导乘以输出电阻。输出电阻等于从输出节点看进去的两个共源共栅结构输出电阻的并联,因此有
上式指出了具体某个晶体管对电路直流增益的贡献,因此是晶体管参数调整的总体指导 依据。此外,从图1 可以看到,M5、M6、M7 和M8 处在信号通路上,故要保证其电容值最 小,因此在改变参数以增大直流增益的过程中,尽量保持最小尺寸不变而进行宽长比的整体 变化。而PMOS 管M1、M2、M3 和M4 对信号的影响小得多,增大其尺寸可非常有效地改变 直流增益。
3.2 单位增益带宽
套筒式共源共栅运算放大器的小信号传递函数可写为
- 一种增大放大器增益的方法(11-28)
- 改善可编程增益放大器性能的一个技巧(05-21)
- 运用负反馈模型分析实际运算放大器电路(05-07)
- 在数据转换系统中校准增益误差的方法(03-23)
- 一个对温度不敏感的高增益运算放大器设计(09-16)
- 增益天线种类详解(11-12)
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...