微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 高效率谐振型开关电容变换器

高效率谐振型开关电容变换器

时间:08-04 来源:作者:梅 纯 责编:豆豆技术应用 点击:

0 引言

开关电容变换器(Switched Capacitor Convert-er)仅由电容器和开关管来实现电压的变换。由于不含电感和变压器,因此可以大大缩小开关电源的体积和重量,并且易于在芯片中实现集成。

传统的开关电容变换器存在一个固有的缺点:在电容周期性的充放电过程中会产生很大的尖峰电流。这将导致变换器的效率随着输出电流的增加而急剧下降。因此,传统的开关电容变换器只能使用在输出电流很小的场合。其效率一般低于80%。

本文提出了一种谐振型开关电容变换器拓扑。与传统的开关电容变换器比较,该变换器的充放电电容工作在谐振状态,并且所有的开关管可以实现零电流开关,因此,谐振型开关电容变换器不存在电流尖峰问题,可以应用于输出电流较大的场合。其变换器效率也大大提高,一般在90%左右。

1 谐振型开关电容变换器的工作原理

图1所示为传统的三倍压开关电容变换器电路。在此电路中,当S1、S2和S3轮流导通时,电容C1及C2在充放电过程中会产生很大的尖峰电流(如图3所示)。由于电路中寄生阻抗的必然存在,此电流将导致较大的能量损耗。而减小电路内部的寄生阻抗将会使电容充放电过程中产生更大的尖峰电流,因此,此方法并不能减少能量损耗。

图2所示为一谐振型开关电容变换器拓扑。通过增加一个很小的谐振电感Lr,该变换器可以消除尖峰电流问题。其工作过程如下:当S1导通,s2及s3截止时,电源Vs通过Lr和D1、D2、D3同时给电容C1及C2充电,由于电感Lr的存在,C1及C2并联后与Lr串联谐振。C1及C2上的平均直流电压为Vs。此时负载由电容Co供电。当S2及S3导通,S1截止时,二极管D1、D2、D3均承受反向电压而截止。电源Vs通过Lr和C1及C2串联升压后给电容Co和负载供电,因此该变换器为三倍压升压式开关电容变换器。放电过程中C1及C2串联后和Lr串联谐振。

由上面的分析可知,谐振型开关电容变换器工作过程中,充放电电容均工作在谐振状态,其电流必然为正弦波。图3比较了两种不同的开关电容变换器电容电流的波形。显然,谐振型开关电容变换器性能更优越。

2 数学分析

2.1 工作过程分析

图4给出了谐振型开关电容变换器工作过程中的典型波形。下而将每个工作周期分为4个不同的状态进行分析。

2.1.1 状态1[to-t1]

to时刻S1开通,S2及S3已经截止。C1及C2并联后与Lr、Vs串联。此时,C1及C2均与电感Lr串联谐振。谐振电流从to时刻由0开始上升,因此S1零电流开通。t1时刻谐振电流经过半个周期后回到零,由于二极管D1、D2、D3的存在,电流没有反向通道,谐振结束。取C1=C2=C,此过程中的电路状态方程为

式中:Vs为输入端电压;

vC为谐振电容(C1或C2)电压;

iL为谐振电感(Lr)电流。

令vC在to时刻的初值为Vco,式(1)和式(2)的解为

式中:ωo为谐振角频率;

Zo为谐振阻抗。

0 引言

开关电容变换器(Switched Capacitor Convert-er)仅由电容器和开关管来实现电压的变换。由于不含电感和变压器,因此可以大大缩小开关电源的体积和重量,并且易于在芯片中实现集成。

传统的开关电容变换器存在一个固有的缺点:在电容周期性的充放电过程中会产生很大的尖峰电流。这将导致变换器的效率随着输出电流的增加而急剧下降。因此,传统的开关电容变换器只能使用在输出电流很小的场合。其效率一般低于80%。

本文提出了一种谐振型开关电容变换器拓扑。与传统的开关电容变换器比较,该变换器的充放电电容工作在谐振状态,并且所有的开关管可以实现零电流开关,因此,谐振型开关电容变换器不存在电流尖峰问题,可以应用于输出电流较大的场合。其变换器效率也大大提高,一般在90%左右。

1 谐振型开关电容变换器的工作原理

图1所示为传统的三倍压开关电容变换器电路。在此电路中,当S1、S2和S3轮流导通时,电容C1及C2在充放电过程中会产生很大的尖峰电流(如图3所示)。由于电路中寄生阻抗的必然存在,此电流将导致较大的能量损耗。而减小电路内部的寄生阻抗将会使电容充放电过程中产生更大的尖峰电流,因此,此方法并不能减少能量损耗。

图2所示为一谐振型开关电容变换器拓扑。通过增加一个很小的谐振电感Lr,该变换器可以消除尖峰电流问题。其工作过程如下:当S1导通,s2及s3截止时,电源Vs通过Lr和D1、D2、D3同时给电容C1及C2充电,由于电感Lr的存在,C1及C2并联后与Lr串联谐振。C1及C2上的平均直流电压为Vs。此时负载由电容Co供电。当S2及S3导通,S1截止时,二极管D1、D2、D3均承受反向电压而截止。电源Vs通过Lr和C1及C2串联升压后给电容

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top