微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 安森美设计EMI准谐振适配器

安森美设计EMI准谐振适配器

时间:03-16 来源: 点击:

准方波谐振转换器也称准谐振(QR)转换器,广泛用于电源适配器。准方波谐振的关键特征是金属氧化物半导体场效应晶体管(MOSFET)在漏极至源极电压(VDS)达到其最低值时导通,从而减小开关损耗及改善电磁干扰(EMI)信号。

准谐振转换器采用不连续导电模式(DCM)工作时,VDS必须从输入电压(Vin)与反射电压(Vreflect)之和降低到Vin。变压器初级电感(Lp)与节点电容(Clump,即环绕MOSFET漏极节点的所有电容组合值,包括MOSFET电容和变压器寄生电容等)构成谐振网络,Lp与Clump相互振荡,振荡半周期以公式 计算。

然而,自振荡准谐振转换器在负载下降时,开关频率上升;这样,在轻载条件下,如果未限制开关频率,损耗会较高,影响电源能效;故必须限制开关频率。

限制开关频率的方法有两种。第一种是传统准谐振转换器所使用的带频率反走的频率钳位方法,即通过频率钳位来限制开关频率。但在轻载条件下,系统开关频率达到频率钳位限制值时,出现多个处于可听噪声范围的谷底跳频,导致信号不稳定。

为了解决这个问题,就出现第二种方法,也就是谷底锁定,即在负载下降时,在某个谷底保持锁定,直到输出功率大幅下降,然后改变谷底。输出功率降低到某个值时,进入压控振荡器(VCO)模式,参见图1。具体而言,反馈(FB)比较器会选定谷底,并将信息传递给计数器,FB比较器的磁滞特性就锁定谷底。这种方法在系统负载降低时,提供自然的开关频率限制,不会出现谷底跳频噪声,且不降低能效。
\

最新准谐振控制器NCP1379/NCP1380概览

NCP1379和NCP1380是安森美半导体新推出的两款高性能准谐振电流模式控制器,特别适合适配器应用。作为应用上述第二种方法的控制器,NCP1379和NCP1380包括两种工作模式:一为准谐振电流模式,带谷底锁定功能,能消除噪声;二为VCO模式,用于在轻载时提升能效。这两款器件还提供多种保护功能,如过载保护(OPP)、软启动、短路保护、过压保护、过温保护及输入欠压保护。

就工作原理而言,在带谷底锁定的准谐振模式,控制器根据反馈电压锁定至某个谷底(最多到第4个谷底),峰值电流根据反馈电压来调整,提供所需的输出功率。这样,就解决了准谐振转换器的谷底跳频不稳定问题,且与传统准谐振转换器相比,提供更高的最小开关频率及更低的最大开关频率,还减小变压器尺寸。

而在反馈电压小于0.8 V(输出功率减小)或小于1.4 V(输出功率上升) 时,控制器进入VCO模式,此时峰值电流固定,为最大峰值电流的17.5%,而开关频率可变,由反馈环路设定。

在保护功能方面,这两款器件以读取辅助绕组电压结合提供过零检测(ZCD)和过载保护功能(参见图2),其中在MOSFET关闭期间(辅助绕组正电压)使用ZCD功能,而在MOSFET导通期间(辅助绕组负电压)使用OPP功能,能够根据ZCD电压减小峰值电流。
\
图2:NCP1379/NCP1380结合提供ZCD和OPP功能。

此外,这两款控制器内置80 ms定时器,用于短路验证。还提供绕组短路保护功能,以额外的电流感测(CS)比较器及缩短时间的前沿消隐(LEB)来检测绕组短路,当电流感测电压(VCS)达到电流感测电压阈值(VILIM)的1.5倍后就关闭控制器。

值得一提的是,NCP1380提供A、B、C和D等不同版本,用以满足客户不同的保护需求。例如,四个版本均提供过压保护功能,而其中NCP1380A和NCP1380B提供过温保护,NCP1380C和NCP1380D提供输入过压保护;另外,NCP1380A和NCP1380C提供过流保护闩锁,而NCP1380B和NCP1380D提供过流保护自动恢复功能。此外,NCP1380A和NCP1380B在同一引脚上结合了过压保护和过温保护功能,而NCP1380B、NCP1380D及NCP1379在同一引脚上结合了过压保护和输入欠压保护功能,这样就减少了外部元件需求。

应用设计过程

假定我们的目标电源规格为:输入电压85至265 Vrms,输出电压19 V,输出功率60 W,最小开关频率45 kHz(输入电压为100 Vdc时),采用600 V MOSFET,230 Vrms时待机能耗低于100 mW。这样,我们可将应用设计过程分解为多个步骤。

1) 准谐振变压器参数计算

匝数比: \

初级峰值电流:\

初级电感:\

次级均方根(RMS)电流:\

2) 预测开关频率

负载下降时,控制器会改变谷底。问题在于如何才能预测负载变化时开关频率怎样变化。实际上,功率增加或减小时,控制器用以改变谷底的反馈(FB)电平也不同,正是借此特性提供谷底锁定。知道反馈电平阈值后,我们就能够计算开关频率的变化及相应的输出功率。通过手动计算或使用Mathcad电子表格,我们就可以解极出最大开关频率。

\

3) 时序电容值(Ct)计算

在VCO模式下,开关频率由时序电容(Ct)完成充电而设定,而Ct电容的充电完成受反馈环路控制。由准谐振模式的第4个谷底向VCO模式过渡时,输出负载轻微下降。要计算Ct电容值,先要计算第4个谷底工作时的开关频率,并可根据反馈电压(VFB)与时序电容电压(VCt)之间的关系计算出VCt的值为1.83 V。然后,根据等式Ct=ICtTsw,vco/1.83,可以计算出Ct的值为226 pF。我们实际选择的的200 pF的Ct电容。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top