微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 简论变频器广泛应用对电力系统的影响

简论变频器广泛应用对电力系统的影响

时间:06-21 来源:维库 点击:

        5 变频器输入电流不对称

5.1 输入电流不对称及其影响

工业应用中的交直交电压型变频器往往采用三相桥式结构,低载运行时交流电源输入侧输入电流不对称会引起三相功率因数不平衡现象。这主要是由于中间直流环节不是无穷大容量,在实际运行中存在充放电过程,变频器满载运行时,输入输出电流接近额定值,充放电电流影响不大,但是变频器在启动后未达到额定功率前或者在低载的状态稳定运行的情况下,由于输入输出电流也非常的小,充放电电流的影响就不能忽略。下面以图5所示交直交变频器为例,对低载工况下,充放电电流引起的输入电流不对称现象产生原理进行简单分析。

图5 交直交电压型变频器拓扑结构

输入三相对称电压Ua、Ub、Uc,频率为0,一般来说输入为工频电压,0=50Hz。直流环节电压Uc波形如图6所示,为一系列纹波。则直流侧电容相应的充放电电流iD 波形如图7所示,其频率为3 ?0,变频器逆变环节的输入电流i2主要由变频器负载特性决定,对纯阻性负载而言,i2应该是一系列正弦半波,如图8所示。由图5可见变频器整流环节输出电流i1应是i2和iD的矢量叠加,叠加后的波形如图9所示。根据三相全控桥式6脉波整流原理可以推得变频器输入侧三相电流如图10、11、12所示,显然三相波形严重不对称,A相电流的有效值较B、C两相都大。

则在一定的有功输入情况下,由于输入电压三相对称,计算得到A相的视在功率比B、C两相大,因此A相的无功功率较大,功率因数较低,三相功率因数出现不平衡。本文分析是A相表现得功率因数偏低,实际变频设备运行时,根据其输出频率以及整流、逆变环节控制方式的不同,功率因数偏低现象有可能出现在B相或者C相。

    5.2 实际测试结果

为验证变频器输入电流不对称引起的功率因数不平衡现象,以杭州市某自来水厂使用的变频器为例,于2005年11月14日采用TOPAS1000电能质量测试仪对变频器输入侧进行了测试。该变频器输入工频380(V)3相交流电,送出5~9kHz的二次交流电,二次电压为540(V)左右,测试期间逐步梯次增加变频器输入有功功率,逐次记录不同有功功率水平下的输入电压、电流、视在功率以及功率因素。

   输入功率为33kW时,在变频器输入端测量得到电流波形如图13所示,可见B相电流较A、C两相差别很大,随着输入功率的增加,B相电流和A、C两相的电流波形越来越接近,图14和图15分别是输入功率为54kW和85kW时输入侧电流波形。不同功率水平下测得的输入电压、电流、视在功率和功率因数的对比如表1所示。显然,输入功率为33kW时,三相的功率因数显着不平衡,B相的功率因数明显偏低,输入功率为54kW,B相功率因数有了很大改善,输入功率增加到85kW,B相功率因数和A、C两相已然差别不大。

图15 变频器工作功率为85kW时输入侧电流波形

5.3 改善变频器输入电流不对称措施

从目前的研究看来,输入电流不对称现象存在的时间段往往不长,且只在部分拓扑类型的变频器中体现,从5.1中的分析来看,整流电路简单的控制方式以及直流侧电容容量的限制是造成输入电流不对称的主要因素,因此本文就改善输入电流不对称现象,提出以下几条建议:

(1) 变频器尽量在额定的功率下运行,使得直流环节的充放电电流影响变得相对微弱;
(2) 直流环节的电容器容量不宜选择的太小,保证一定的容量以降低充放电电流的波动幅值,改善整流环节输出电流的畸变程度,可以较好的改善变频器输入电流的不对称程度;
(3) 变频器整流环节可以采用更优化的整流变换电路,比如高频整流电路,可以改善整流输入波形,提高功率因数,且功率可双向流动,直流侧电压调节特性好;
(4) 可以对整流环节采取多重化技术,提高整流电路的脉波数,降低整流环节输出电压的波动性,减少直流环节电容器的充放电电流值。
另外,还可以综合整流、逆变环节考虑,合理确定整流和逆变电路的开关触发角,使整流电路输入电流的三相波形尽量对称,这个方面还有待进一步的研究。

  6 不合格电能对变频器本身的影响

变频器产生谐波以及造成功率因数不平衡破坏电网的电能质量,大量变频器的广泛应用对电网造成的污染越来越严重,首当其冲的是影响到其自身的正常运行。变频器产生的谐波电流在系统阻抗上产生压降,使得其输入电压波形发生畸变,长时间运行在这样的环境下,开关损耗大大增加,开关元件寿命大大缩短,变频器很容易损坏;变频器在输入波形失真的情况下长时间运行,会导致整流环节控制失灵,引起开关元件误动作,甚至在开关过程产生过电压烧坏元器件;如果不及时采取相应措施改善输入波形,不仅影响到变频器的正常工作,还会造成分别与变频器输入端和输出端连接的相关电气设备烧损。这样的实例也越来越多,在近几年的工作中已经多次目睹类似事故。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top