基于门控时钟的低功耗时序电路设计
图4 分频因子为10的电路运算
在这种情况下,只有Sel[0]会变为1并启用s触发器的时钟,并且同样地,sel[3]、sel[2]、sel[1]将相应禁用(b、c、d、e、f、g、h、i)、(k, l, m, n)、(p、q)触发器的时钟,见图4中突显部分。另外需要注意的是,"a, j, o和r"触发器将始终启用。这样一来,不仅启用了所需的触发器,并且该电路可在第4个多路复用器的输出上获得所需的输出时钟。因此,在这个示例中,共有5个触发器接收到时钟,其他触发器的时钟将自动被禁用。
我们对上述计数器进行了模拟,其结果以RTL波形的形式呈现在图5中。根据图5可以推出:修改后的计数器采用sel[3:0]作为4'h0001,将一个100 MHz的时钟进行分频,提供10 MHz的输出。
图5 分频因子为10的波形
推荐的电路可实现各种组合,表2列出了多路复用器所选择的输入。
表2 不同分频因子的多路复用器
推荐方法的优势
本文所介绍的约翰逊计数器可根据分频因子(范围为8至38)进行编程,按提供给计数器组合逻辑的输入所配置的提供一系列输出频率。
即使此计数器中配备了额外的硬件来实现可编程性,但是该电路的功耗通过一个逻辑提供的有效门控时钟进行控制,该逻辑与在选择阶段挑选多路复用器时所采用的逻辑相同,并启用门控时钟单元。
因此,将门控时钟添加到设计内以后,任何从移位寄存器传送至计数器的时序逻辑都可以变得更加高效,并且片上系统的一系列此类电路综合起来可以节省功耗并延长设备电池寿命。
总结
在设计阶段,由于架构师对电路的功耗要求越来越严格,并且倍增系数越来越大,因此对多路复用级联时钟分频器的需求也随之加大,但这种分频器会使电路消耗更多的功耗,并且占用更大的芯片面积。结构调整后的设计却提供了一个更加轻松的解决方案,与传统电路相比,重组后的电路可支持不同的输出频率,同时消耗更低的功耗。该解决方案还可轻松应用至各种其他设计中,使其他设计变得更加节能。
- 基于门控时钟的低功耗电路设计方案(02-16)
- 在多通道应用中使用放大器禁用功能代替多路复用器(03-25)
- 揭开高性能多路复用数据采集系统的神秘面纱(03-17)
- 你的放大器千万别被抓到超速(06-20)
- 基于MSI的N进制计数器设计方法研究(02-01)
- N进制异步计数器设计方案(12-06)