微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > Giga ADC 介绍及杂散分析(上)

Giga ADC 介绍及杂散分析(上)

时间:01-22 来源:3721RD 点击:



2.3 Preamplifier

预放大电路处于采保电路之后,比较器之前,包括第二级输入buffer,折叠内插电路等。预放大电路的主要功能包括:输入信号的放大,以降低电路偏置误差对性能的影响;输入信号的折叠处理,将输入信号通过折叠电路分成若干部分,从而降低比较器的个数;通过内插电路增加信号过零点,减少折叠电路模块。

2.3.1第二级输入buffer

第二级输入buffer的主要作用就是要把采保电路输出的伪差分信号通过差分放大器转换成真正的差分信号,以达到更好的电源抑制比和方便后级处理。第二级buffer输出的差分信号分成两路,一路输出给粗分转换电路,用于判决输入信号处于那一个折叠区;一路输出给细分转换电路,输出具体的转换数据。

2.3.2折叠电路



Figure 8为一种实际折叠电路及其直流传输特性。Figure 8(a)中,输入信号Vin和5个量化参考电平Va、Vb、Vc、Vd和Vf;5个源极耦合对的漏极交替连接,通过负载电阻R1和R2的I/V变换,形成一对5倍折叠(折叠率F = 5)的差分折叠信号Vo +与Vo -,如Figure 8(b)所示。Figure 8(b)中,直流传输特性上差分输出为零的点称为过零点。可见,除了过零点附近,实际折叠电路的传输特性存在着一定的非线性区域。为解决非线性区域上输入信号的量化问题,可采用两个具有一定相位差的折叠信号,如Figure 9所示。它们之间的相位差保证了各自的非线性区域相互错开。

当一个折叠输出信号不是在线性区域范围内时,另一个折叠输出信号恰好在线性区域内,反之亦然。这种方法可以推广到相位差更小的一组折叠信号的情况,以减小非线性区域的影响。直至,相邻折叠信号的过零点只相距一个量化单位(LSB)时,每个与折叠电路连接的比较器只需检出过零点。此时,折叠结构ADC不再要求折叠信号的线性区域范围,只要求过零点的精度。

在折叠电路设计中,一级折叠电路折叠率不宜过高,这主要是因为,如果一级折叠率过高,那么这么多输出通过长的走线连接到一起输出给下一级比较器,寄生电容对于后级的影响变得不可忽略。在TI的Giga ADC中,一般采用多级折叠电路级连的方式,例如,如果要实现一个折叠率为9的电路,采用了两级折叠级连,每级的折叠率是3,如figure10所示。



2.3.3内插电路

直接利用折叠电路来产生所有2N个过零点,ADC的功耗与输入电容都很大。通常的解决办法是采用折叠-内插结构,如Figure11所示。每两个折叠电路的输出之间连接一个插值电阻串,利用插值电阻的分压作用得到两个折叠电压信号之间的插值电压。每个插值节点作为输出,插值的数目称为内插率I;Figure11是当I=4的内插结果,两侧为原始的由折叠电路产生的折叠信号,夹在其间的3个信号是被节省的、由内插电路产生的折叠信号。这样,通过4倍的内插,每4个折叠信号可以节省3个折叠电路。



通过折叠内插电路的波形如下图所示:



2.3.4平均电路

前面提到,影响电路精度的主要误差是差分信号的偏置误差。降低差分电路的偏置误差可以增加晶体管的面积。但由于在折叠电路中,偏置误差不仅仅来自于差分电路,折叠电路中其它饱和支路的输出电流也增加了整个电路的偏置误差,简单的增加电路晶体管面积并不能有效的降低误差。由于各个放大电路的偏置误差是不相关的,这里采用了迭代的技术,使某一输出节点的偏置误差不仅仅取决于本身放大电路,还和相邻其它并行放大电路输出有关,偏置误差通过放大电路输出的迭代而随机化,降低了整个电路的偏置误差。

2.4校准电路

前面提到的各种设计电路有效的提高了ADC的线性性能和带宽,但在TI Giga ADC,仍然集成了校准电路,用以进一步优化ADC的性能。这部分校准电路包括27个高精度校准电压,采用轮询的方式依次输入到输入级的开关,并根据校准信号的输出结果通过DAC调整预放大电路的偏置电流,达到校准修正的结果。

通过Figure5可以看到,输入级的MUX开关,采保电路,输入buffer的偏置误差以及折叠电路的偏置误差等包括在校准环路里,通过校准不仅仅提高了放大电路的线性,而且提高了系统在interleave模式下两路ADC之间的一致性,改善了系统的杂散性能。

Giga ADC 介绍及杂散分析(下)

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top