Giga ADC 介绍及杂散分析(上)
摘要
Giga ADC是TI推出的采样率大于1GHz的数据转换产品系列,主要应用于微波通信、卫星通信以及仪器仪表。本文介绍了Giga ADC的主要架构以及ADC输出杂散的成因分析,以及优化性能的主要措施。
1、Giga ADC架构及TI的Giga ADC
1.1 Giga ADC架构演进
Giga ADC目前已经广泛的应用于数据采集、仪器仪表、雷达和卫星通信系统;随着采样速率和精度的进一步提高,越来越多的无线通信厂商开始考虑使用Giga ADC实现真正的软件无线电。软件无线电不仅可以简化接收通道设计,同时可以方便不同平台的移植和升级,从而降低开发成本和周期。
Figure 1列出了在使用各种采样架构下,采样精度和采样速率之间关系。随着技术和工艺的发展,各种架构可以支持的采速率在不断的提升,但就目前的水平来看,要实现1Gpbs以上的采样率,必须采用Flash或者折叠(Folding)架构。
这主要是因为在其它架构中,都采用了反馈环路;这些反馈环路的传输延时限制了ADC速率的进一步提升。例如在pipeline中,每一级都有一个DAC,用于把本级的数据输出转换成模拟信号,反馈给本级的模拟输入,取差以后放大输出给下一级。类似的限制也存在于Subranging或者multi-step架构中,都需要一个反馈环路辅助判决。
另一方面,虽然目前业界最快的ADC架构是Flash架构,但一个N bit的flash ADC需要2N-1个比较器,当N>= 8时,比较器的数量将会非常庞大;而且随着转换精度的增加,后端的译码逻辑也会变得异常复杂;这些都会对芯片的体积和功耗造成很大的影响。
所以在TI的Giga ADC中,采用了折中的折叠(folding)架构。事实上,折叠是和flash类似的架构,不同的是,在折叠架构中,输入信号分别通过了粗分ADC和折叠电路+细分ADC;折叠电路的理想传输特性为三角状循环的折叠信号。以一个8bit ADC为例,粗分ADC输出3bit,细分ADC输出5bit.如Figure 2和Figure 3所示,折叠电路共折叠了8次,将满量程的输入范围等分为8段,分别对应3位粗分ADC转换产生的高位bit(MSB);同时对上述折叠电路输出信号进行5位细化转换得到低位bit(LSB);最后高、低位数字码合起来组成8位的数字输出。
对于一个8bit ADC,采用折叠电路架构所需要的比较器个数为(m = 3,n = 5);如果采用flash架构,则需要比较器的个数为。显而易见,采用折叠架构大大降低了比较器的个数。
1.2 TI Giga ADC产品介绍
TI在过去的十年当中,利用创新的ADC架构和工艺技术,不断的刷新业界Giga ADC的采样速率和转换精度,最新的产品已经可以达到5Gbps @ 7.6bit(LM97600)和4Gpbs @ 12bit(ADC12D2000RF)。Figure 4是目前TI全系列的Giga ADC产品:
2、TI Giga ADC架构介绍
本章节中将详细讨论Giga ADC的各个功能模块。在实际应用中,设计者一般都会采用Folding + interpolation + calibration的架构,用于进一步简化设计,降低功耗和提高精度。
上图是一个典型的folding-interpolation架构的Giga ADC框图。在这类ADC中,为了解决模拟输入端的匹配误差和输入偏置误差,集成了一个校准信号源,在不需要外部输入的情况下,实现芯片的前台校准,使芯片达到最大性能。除此之外,还包括输入的buffer,采保电路,foldinginterpolation电路以及比较器、encoder和LVDS输出电路。
2.1 Input mux
在Figure 5中可以看到,为了尽可能的把输入链路上所有器件包含到校准环路中,校准信号的输入开关加在了输入电路的最F前端。这对开关电路的线性和带宽提出了很高的要求。在TI的Giga ADC电路中,采用了constant Vgst NMOS pass-gate电路,这种电路不仅宽频带内导通电阻稳定不变,失真小,而且功耗低。
电路校准只在器件上电或者器件工作温度发生明显变化的时候才会发起,输入校准开关也只在这个时候才会导通。
2.2 Interleaved T/H
在高速ADC设计中,为了达到更高的采样速率,采用了interleaved的架构,即一个模拟输入,输入到两个相同的ADC中,但这两个ADC的采样速率相同,相位相反;最后芯片的数字部分把两路ADC的输出信号重新整合,达到了相对于每路ADC两倍的采样速率。将采样保持电路放在第一级buffer之后,主要是因为这一级buffer降低了输入信号的负载和kickback噪声,方便宽带匹配;同时降低了采保电路的工作频率,使得采保电路和第二级buffer的设计和功耗大大简化。
需要注意的是,在interleaved架构中,两路采样保持电路和buffer的偏置和增益误差,以及两路采样时钟之间的相位误差,都会给整个ADC系统SNR带来很大的影响。在设计中,两路电路采用了完全镜像的设计,同时两路电路都在校准环路里,有效的降低了这些误差带来的性能恶化。
Giga ADC TI 反馈环路 采样保持 预放大 相关文章:
- Giga ADC 介绍及杂散分析(下)(01-22)
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)
- 在射击探测器中增加口径确定功能的简单电路(11-13)
- 一种折叠共源共栅运算放大器的设计(11-20)