微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 高压直流开关电源的设计与实验研究

高压直流开关电源的设计与实验研究

时间:01-28 来源:互联网 点击:

实际电路中,开关管的开关速度或导通压降不同或开关管的驱动信号不一致时,功率转换电路便工作在不平衡状态。此时磁通变化幅度不相同,工作区域将偏向一个象限,引起磁芯单向饱和并产生过大的ip,从而导致开关管的损坏,最终使变换器不能正常工作。为了让全桥变换电路更可靠的工作,抑制变压器初级电压的直流分量采用变压器初级串接隔直电容Cb.Cb和输出滤波电感折算到初级的电感值形成串联谐振网络,谐振频率表达式如下:

折算到变压器初级的滤波电感值LLf=K2Lf.为了尽可能让Cb充放电呈线性化,fT必须远小于变换器的开关频率fs,取fr=0.1fs,由式(6),LLf=K2Lf及fr=0.1fs可求得Cb=1.2μF,实际取两个1μF/400 V的云母电容并联。

3控制系统的设计

3.1 APFC控制方案

APFC控制采用平均电流法,系统框图见图4.采用电流、电压双闭环控制,电流环使输入电流更接近正弦波,电压环使APFC输出电压稳定。

此处通过APFC控制器UCC3818实现双环控制,其输出的PWM脉冲可直接驱动开关管。双环调节器如图5所示。

通过计算电压、电流环增益和穿越频率即可确定相应PI参数,实际设计参数为:Ru=56 kΩ,Cu1=3.3μF,Cu2=0.3μF,Ri=16 kΩ,Ci1 =Ci2=1.1 nF. 3.2 ZVS全桥变换器控制方案DC/DC级采用单电压环控制模式,并在电压环基础上加上了限流环,正常情况下限流环工作,只由电压环控制输出电压,一旦输出电流超过限流值,就由限流环工作,通过减小输出电压将输出电流稳定在限流值上。该控制通过UCC3895芯片实现,控制系统框图如图6所示。

选择超前-滞后补偿网络实现控制,与一般滞后补偿网络相比,该网络增加了微分环节,提高了控制系统的动态性能。具体环节如图7所示。

补偿网络的传递函数Gc(s)={(1+sR2C1)[1+s(R1+R3)C3]}/{[sR1(C1+C2)][1+sR2C1C2/(C1+C2)](1+sR3C3)}.对ZVS移相全桥变换器进行小信号建模并采用零极点补偿法对参数进行设计,实际所选参数为:R1=91 kΩ,R2=4.8 kΩ,R3=2 kΩ,C1= 0.1μF,C2=0.02μF,C3=1μF. 4实验结果为验证高压直流开关电源主电路结构和控制方案的可行性,研制了一台2.4 kW的实验样机。主要电路参数:APFC部分为交流220 V输入,输出直流电压380 V:ZVS全桥变换器部分,输出直流电压240 V,输出电流10 A,主功率开关管VQ1~VQ4为IXFX48N60P(48 A/600 V);输出整流二极管VDR1~VDR4为DSEI30-10A,箝位二极管VDs1和VDs2为DSEI30-06A,变压器初次级匝比为1.06,输出滤波电感Lf=300μH,输出滤波电容值Cf=56μFx8,开关频率fs=80 kHz.图8a为APFC主开关管在1/3负载时波形,其实现了软开关。图8b为APFC输出电压突加半载时的波形,由图可知,其性能较好。由1/3负载下所测波形可知,超前、滞后桥臂实现了ZVS.由(半载)变压器次级及整流桥输出电压波形可知,不加箝位二极管电压尖峰超过正常值两倍以上,添加箝位二极管后电压尖峰几乎被消除,解决了整流桥输出寄生振荡问题。可见,DC/DC级控制系统设计较合理,超前,滞后补偿环节提高了系统的动态性能。

5结论

研制了两级结构高压直流开关电源,前级采用单相有源软开关PFC,提高功率因数,合理设计谐振参数可实现软开关,降低开关损耗。控制部分采用PI调节器,具有较好性能。后级选择在初级加箝位二极管的改进型ZVS全桥变换器,实验结果证明该电路结构能够有效抑制次级整流桥输出振荡和电压尖峰,减少损耗。该方法简单,实用性较强。控制系统进行方案选择,PID参数合理设计,提高了高压直流开关电源的动、静态性能。

电源设计必杀技:TI公司最系统的电源设计培训资料

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top