微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 锁相环+双AD7865实现交流采样

锁相环+双AD7865实现交流采样

时间:09-27 来源:互联网 点击:

介绍了电力系统参数交流采样的设计思想,对频率跟踪电路进行了分析,提出了由锁相环CD4046和AD7865构成的硬件解决方法,并给出了由CD4046构成的频率跟踪电路、信号调理电路以及AD7865与TMS320LF2407的接口设计电路,解决了电力系统中多路电压、多路电流的交流采样问题,保证电网频率变化时采样数据的精度和稳定性。该采样算法可以应用于多种场合,具有一定的实用和推广价值。

  1 交流采样的设计思想

  若将电压有效值公式:

  离散化,以一个周期内有限个采样电压数字量来代替一个周期内连续变化的电压函数值,则式(1)变为:

  式中:△Tm为相邻两次采样的时间间隔;um为第m-1个时间间隔的电压采样瞬时值;N为一个周期内的采样点数。若相邻两次采样的时间间隔相等,即△Tm为常数△T,考虑到N=T/△T,则有:

  这就是根据一个周期内各采样瞬时值及每周期采样点数计算电压信号有效值的公式。同样,电流有效值计算公式:


  计算一相有功功率的公式:

  式中:im和um为同一时刻的电流和电压采样值。

  功率因数为:

  2 工频信号锁相倍频原理及频率跟踪电路的实现

  交流采样法包括同步采样法、准同步采样法、非整周期采样法、非同步采样法等几种,系统采用同步采样法。同步采样法就是整周期等间隔均匀采样,要求被测信号周期T与采样时间间隔△t及一周内采样点数N之间满足关系式T=N△t,即采样频率为被测信号频率的N倍。根据提供采样信号方式不同,同步采样法又分为软件同步采样法和硬件同步采样法两种。本系统采用硬件同步采样。

  硬件同步采样法是由专门的硬件电路产生同步于被测信号的采样脉冲。一种利用锁相环频率跟踪原理实现同步等间隔采样的电路如图1所示。

  在相位比较器PD、低通滤波器LP、压控振荡器VCO构成的锁相环内加入N分频器,输入fi为被测信号的频率,作为锁相环的基准频率,输出fo为采样频率。fo经N分频后与fi相比较,根据锁相环工作原理,锁定时fo/N=fi,即fo=Nfi。由于锁相环的实时跟踪性,当被测信号频率fi变化时,电路能自动快速跟踪并锁定,始终满足fo=Nfi的关系,即采样频率为被测信号频率的整数(N)倍。用该输出去控制采样/保持器,并启动A/D转换,这样就可以使N个采样点均匀分布在被测电网信号的一个整周波内,消除了同步误差,实现了无相位差的同步采样。锁相环相位锁定时,压控振荡器VCO能在一定范围内自动跟踪输入信号的频率变化,在频率有畸变的情况下也能确保数据的同步采样,保证测量精度。

  系统中的频率跟踪电路由专用锁相芯片CD4046和分频芯片CD4040组成,以实现工频信号的锁相倍频,分频比为1/64。在工频信号恰好为50 Hz的情况下,该电路的锁相倍频频率为50×64=3 200 Hz,相当于一个工频周期内有64个采样脉冲,频率跟踪锁相电路接线图如图2所示。

  由图2可看出,工频方波信号由AIN输入,经过倍频的方波信号由VCOUT输出去触发A/D芯片。

3 电压电流调理电路设计

根据原理设计的电压调理电路如图3所示。

  设计中采用2 mA/2 mA电流型互感器TV1013-1,采样电阻为220 kΩ,最大可测电压有效值为440 V;调节滑动变阻器大小,通过信号滤波、电压抬升、功率放大将待测信号转化为0~5 V的电压信号Uout,作为A/D芯片的输入信号;同时采用过零比较法使Uout与抬升零点比较产生工频方波信号,作为锁相环电路的输入信号。

  电流采集电路与电压采集电路相似,只是电流信号衰减部分使用了sensor系列精密电流互感器CHG-200E与TA1905-4组成的两级电流互感器,转化比例为20 A/1.25 mA,并且去掉了采样电阻。具体电路如图4所示,电压抬升电路省略;Iout为0~5 V的电压信号,输入A/D芯片。

  4 TMS320LF2407与双AD7865的接口设计

  4.1 接口电路设计

  在交流采样系统设计中,要求精度为0.2%~0.5%,但TMS320LF2407的10位A/D转换芯片的采样精度为1/1 024,近乎0.1%,但考虑到电路中的其他环节的误差,已很难做到0.2%。为了适应采样法电力参数测量中同时采样多路输入信号及对电压需较宽的测量范围的要求,为此,本系统采用外接A/D的方法,通过TMS320LF2407控制外部AD7865转换器对三相交流电压、电流等电力参数进行交流采样。

TMS320LF2407是TI公司推出的一种面向数字控制系统开发的新型可编程DSP控制器。它将一个高性能的16位、定点、低功耗DSP核和许多功能外设集成在单芯片上,提供了较高的集成度和较强的运算能力,采用先进的哈佛结构和多总线形式,外加4级流水线操作,使大多数汇编指令能在一个机器周期内完成。AD7865是美国AD公司推出的14位4通道高速A/D转换

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top