利用电荷泵为高速CAN收发器供电
细说明,请参考MAX13041数据资料。
正常通信模式下,MAX13041在显性状态需要的最大输入电流(VCC引脚)为80mA,隐性状态(图2)下为10mA。流入VI/O和VBAT的电流可忽略不计。当总线出现故障时,VCC电源电流将显著增大,特别是当CAN_H信号线与地短路时。MAX13041将短路电流限制在IO(SC) = 95mA。
基于上述考虑,为了满足CAN收发器的供电要求,电荷泵必须具有稳定的5V输出电压,确保符合电压容限的要求,最小输出电流为95mA。
1. 电荷泵要求
MAX1759架构允许输入电压高于或低于稳压输出值。而本应用中,电荷泵仅作为升压转换器工作。当VIN低于VOUT时,电荷泵作为稳压型升压倍压器工作。轻载下,电荷泵仅在需要维持负载的供电能量时进行开关操作,消耗很小的静态电流。轻载时,输出电压纹波不会增大。
有关电荷泵其它特性的详细说明,请参考MAX1759数据资料。
2. 实现3.3V方案
从图3电路可以看出,用电荷泵为MAX13041供电非常简单。只需要把MAX1759连接到CAN收发器的VCC输入(蓝色虚线所示),即可产生满足容限和输出电流要求的5V输出电压。该配置允许其它电路采用低压供电。本示例中,外部3.3V电源(绿色)为电荷泵(IN)、微控制器以及收发器的VI/O电平转换器供电。拉高电荷泵的/SHDN,使器件置于ON状态。MAX1759数据资料详细介绍了关于输入/输出(CIN, COUT)电容和飞电容(CX)的选择。
3. 电磁兼容性
电磁兼容(EMC)是CAN通信网络的一个设计挑战,特别是当采用开关型稳压器供电时。CAN系统的网络配线是一个关键问题,由于CAN收发器的CAN_H和CAN_L引脚是连接整个汽车总线网络的接口。设计时如果不谨慎,可能从CAN电源产生较大干扰,干扰信号通过收发器,经过总线最终进入其它ECU,或进入邻近的线缆。这种干扰将造成通信故障或系统其它控制单元之间的传输故障。
基于这一考虑,我们测试了采用MAX1759电荷泵供电的MAX13041的EMC特性,并与采用经过滤波的5V电源供电的收发器的EMC特性进行比较。由此,我们可以看到电荷泵的EMC干扰和电荷泵对CAN总线传输电源干扰的抑制能力。在本测试中,我们主要考虑两个方面:电磁抗扰(EMI)和电磁辐射(EME)。
4. 电磁抗扰测试(EMI)
ISO 11452规范规定了几种抗RF干扰的测试方法,包括大电流注入(BCI)、横向电磁波室(TEM-cell)、带状线以及直接电源注入(DPI)。
由于DPI方法具有较好的可重复性(采用精心设计的测试板),并且测试工作量不大,因此我们选用了该方法。DPI测试原理非常简单:向总线电缆注入特定的经过调制或未经调制的交流电压,通过收发器的RXD引脚检测传输数据的信号完整性。这种方法还便于比较不同厂商的设计,可以在独立的实验室测试CAN收发器(如IBEE)。
5. 测试装置
测试装置(图4)包括三个焊接在PCB上的相同收发器,其中一个收发器由MAX1759电荷泵供电,节点1作为发送器,用于仿真CAN数据的比特流模板,数据由所有收发器接收并在RxD端口进行监测。对于Rx1至Rx3输出以及TxD1输入的RF去耦,采用1k?电阻。每个收发器IC的VCC和VBAT电源端口采用陶瓷电容(C = 100nF)缓冲。唤醒引脚的电阻为33k?。将EN引脚和/STB引脚置于高电平,使器件处于正常工作模式。节点1的VCC电压由MAX1759电荷泵产生,电荷泵由3.3V供电。3.3V电源还用作节点1收发器的VI/O电压。
电荷泵输出电容C1为10μF,飞电容C2为330nF,IN输入引脚采用10μF电容去耦。测试电路中,总线端接采用60? R4电阻进行中心端接。对称的RF耦合/去耦采用RC并联网络,由R5/R6=120、C3/C4=4.7nF组成。外部3.3V、5V、12V电源由标准电源提供,通过滤波网络进行滤波。
6. 测试步骤
对正常工作模式下的CAN收发器MAX13041进行测试,在第一轮测试中,所有收发器采用标准VCC = 5V电源供电;第二轮测试中,其中一个收发器由电荷泵供电(图4)。模板发生器产生占空比为50%的500kbps方波,仿真节点1的TXD引脚的CAN信号(交替的0-1-0数据)。RF输入HF发生器(HF1)对CAN总线注入一个固定频率的调幅(AM)交流电压,功率为36dBm,用于模拟干扰信号。
为评估抑制特性,在馈入TXD的干扰信号的影响下,用示波器比较网络中三个收发器的Rx信号。根据所允许的±0.9V最大电压偏差和±0.2μs最大时间偏差确定屏蔽值,覆盖整个TXD信号波形。
如果达到失效条件(例如,如果一个收发器的RXD信号超出了所确定的屏蔽窗口),将所注入的RF功率降至0.2dBm,并按照特定的频率步长重复相同测试,直到解除失效状态。然后,记录当前的功率值并调整到下一频率步长。测试频率范围覆盖10MHz至100MHz。
7. DPI测试结果
图5所示为标准5V电源作用在VCC为MAX
- DC-DC电荷泵的研究与设计(01-05)
- 一种用于白光LED驱动的电荷泵电路设计(10-15)
- 负电荷泵白光LED驱动器的设计(06-29)
- 白光LED电荷泵电路板布局指南(07-01)
- 一种大电压输出摆幅低电流失配电荷泵的设计(04-22)
- 电荷泵锁相环的数字锁定检测电路应用分析(07-30)