微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 基于DSP实现的一种新颖开关逆变电源

基于DSP实现的一种新颖开关逆变电源

时间:02-13 来源:21ic 华南理工大学 袁开发 蒋怀刚 何志伟 点击:

(a) 驱动波形

(b) 输出波形

图3 输出正弦波的正半周

要输出正弦波的负半周,只需让Q5,Q6的导通顺序交换便可,如图4所示。

(a)

(b)

图4 输出正弦波的负半周

  5 软件实现

  TMS320LF2407的处理速度为30MIPS,几乎所有的指令都可在50ns的单周期内完成,配合其强大的指令运算功能,很容易实现各种控制算法及高速的实时采样,可提高系统的工作效率。为了改善系统的动态品质,并减小系统的静差,采用了闭环来实现各个功率变换环节的控制。

  5.1 PWM波的输出

  本文采用三角波作为载波的规则采样法,来获得等高不等宽的矩形波,即脉冲。每个脉冲的中点都与相应的三角波的中点相对应,在三角波的负峰值时刻tD对正弦调制波采样而得D点,过D点作一水平直线和三角波分别交于A点和B点,如图5所示。则有

δ=Tc(1+sinωrtD)/2

图5 采样三角波载波的规则采样法

  根据这一关系式,如果一个周期内有N个矩形波,则第i个矩形波的占空比为

Dr=0.5+0.5sin(i*2π/N)

  用周期和占空比分别去设定TMS320LF2407中PWM电路相应的寄存器,便可在PWMx(x=1,2,3,4,7,8)上获得所需的PWM脉冲波形,由这些PWM脉冲去控制相应的6个开关管,便可输出正弦波形。要注意的是,输出正弦波质量的高低与用作控制的正弦波的离散数量有关,如果离散数量越多,则输出的正弦波就越平滑,但却增加了DSP的运算量。反之输出会越差。因此,对具体的应用场合,要选择合适的离散值。定时器T1,T3被设定为下溢和周期匹配中断方式,用作PWM输出时基,工作在连续增/减记数模式。

  5.2 实时采样

  采用TMS320LF2407中集成的16路ADC转换电路实现电压、电流采样(每一通道的最小转换时间为500ns)。通过采样模块MAX122,将采样信号转换为LF2407的ADC所需的0~3.3V电平。在一个工频周期中,将采样200次(开关频率为20kHz)。一旦有冲击性负载存在,将导致输出电流,或电压过高,使DSP能及时捕获此突变。DSP将调用相应的子程序来处理过压或过流情况,以保护整个电路的正常运行。定时器T2被设定为下溢和周期中断方式,用作ADC采样的控制时基,工作在连续增/减记数模式。

  6 实验结果

  根据以上原理,初步设计了一台实验系统,并获得了比较好的效果。其主要技术参数如表1所列。

表1 主要技术参数

  图6为全桥电路中隔直电容上的电压,图7为变压器一次侧中性点电压及变压器一次侧电流波形。

时间:5μs/div,电压:2V/div,

图6 隔直电容电压

时间:5μs/div,电压:150V/div,电流:5A/div

图7 一次侧中性点电压及一次侧电流

  可以看出,全桥电路中的开关管在隔直电容和饱和电感谐振作用下,实现了软开通和软关断。图8为输出电压波形。

图8 输出电压波形

  7 结语

  本文介绍了基于DSP数字化控制的相控周波变换器电路拓扑结构,分析了其工作原理,并提出了控制信号的产生过程。实验结果证明了数字化实现的正确性,并取得了较好的效果。可以肯定,采用数字化实现的高频链周波变换器比传统的基于模拟或模拟与数字相结合的逆变器具有更强的优越性。数字化使得系统具有很强的可编程性,无论在调试,还是在产品更新或升级等方面都具有传统逆变器所不可以比拟的优势。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top