一种新型的零电压开关双向DC-DC变换电源
图6 能量从高压向低压流动时的门极控制脉冲 图7 脉冲之间设置死区 图8 电流iLk临界连续波形 图9 升压方式下UM1,UT2,iLk,U2的仿真波形 图10 降压方式下U1,iT1,UT1,UT2,iLk的仿真波形 图11 升压方式下电流iLk的实验波形 图12 升压方式下Uds,Ug的实验波形
零电压开关分析
为实现开关器件的软切换,减小开关过程中的电压和电流值,尽量使开关切换在接近零电压时进行,因此在逆变器开关换流时,设置了死区Td。在图2所示电路中,当能量从低压向高压传送时,在M1从导通向截止换流,M2由截止向导通换流时,中间设置死区Td,如图7所示。考虑到电容Cs1=Cs2,因此,换流期间可以认为UCM1+UCM2=UCM3+UCM4维持不变,等于U1。由于M1关断,CM1充电,电压UCM1从0开始上升,而UCM2放电,电压从U1下降,升、降值相同,维持和不变。因此,CM1的充电电流为iT1/2,CM1充电到电压U1时,CM2放电到0V。如果继续对CM1充电,CM2将被反向充电,DM2会导通。此时为M2的零电压开通提供了条件。对CM1的充电是在iT1的作用下进行的,根据电容充电过程中电流、电压和时间之间的关系可得
由式(5)得th为
因此,只要开关换流间隔死区时间Td大于CM1从0V充电到U1所需的时间th,即满足式(7)就可实现开关元件的零电压开通。一般情况下,取换流时iT1的平均值。
电感Lk的选取
选适当的Lk,使电能从低压侧向高压侧传送时,保持电流iLk连续。实际上,在S3导通期间(ton),C2提供负载电流,而在S3截止期间,电感中的感应电势使S1内部的二极管导通,一方面提供负载电流,另一方面,补充在ton期间C2中电荷的减少。根据功率平衡关系式(8),输入、输出关系式(3)和式(9),可得保持电流连续的最小电感Lkmin。
式中:f为电源的开关频率;I0为高压侧负载的平均电流;U2为高压侧的输出直流电压;UT2为变压器高压侧的电压有效值。
电流iLk临界连续波形如图8所示。
仿真及实验结果
升压方式
1)电压值。升压工作方式下,若取蓄电池电压Vin=24V,开关频率fc=20kHz,占空比D=0.35,高压侧负载功率1kW,则变压器高压侧电压UT2为240V,用式(3)计算输出电压值为307V,仿真结果值见图9,和计算值基本吻合。其它相关的电流、电压波形如图9所示。
2)电感电流iLk的波形。电感电流iLk的波形如图9所示和图4中预期的iLk稳态电流波形一致。在死区段变压器电流迅速回落。
3)开关切换点电压值。根据2.3节的分析,只要满足式(7)即可实现电源的零电压换路。仿真时取Cs2=0.04LF,开关触发脉冲之间的死区Td设成5Ls时,能实现零电压开关,如图9所示。其中uM1为开关M1两端的电压波形。
降压方式
在降压工作方式下,若取低压侧负载功率为200W,高压侧电压U2为240V,占空比D=0.35,则输出电压波形U1,流经电感Lk的电流波形iLk,变压器两侧的电压UT1,UT2分别如图10所示。
部分实验波形
1)电流iLk波形。变流器的电路参数同仿真值,通过示波器观察到的变压器高压侧电流波形,即流经电感Lk的电流波形如图11所示。波形和仿真结果基本一致,见图9、图10中电流iLk波形。
2)零电压开关波形。当电能从高压侧向低压侧传送时,开关器件M1门极控制电压和漏、源极电压波形如图12所示,能实现开关器件的零电压切换。
结束语
本文给出了一个零电压开关的双桥、双向直流电压变换电路,在不改变电路结构的情况下,实现能量的双向流动。由于电路中,使用了新的开关控制策略,使该电路具有稳定的输出电压。在不增加电路元件的条件下实现电路的零电压开关,因此电源的电磁辐射较小。此外,电路还具有体积小、效率高、结构简单、成本低廉、电气隔离等优点。电源的输出功率可达几到十几kW,除可以用于中、小型的电动车驱动外,还可作为中、小型变电站的不间断电源及其它需要双向直流电源供电的设备中。
- 改进型全桥移相ZVS-PWMDC/DC变换器(01-23)
- 零电压开关全桥转换器设计降低元器件电压应力(10-02)
- PWM整流器在电动汽车充电机上的应用(02-04)
- 把零电压开关技术应用在降压稳压器上(04-08)
- 新型灌封式6A至12A DC-DC μModule稳压器系列(11-19)
- DC-DC开关变换器中混沌现象的研究综述(11-27)