微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 高可靠性电源系统的热插拔原理和应用

高可靠性电源系统的热插拔原理和应用

时间:11-14 来源:中电网 点击:

  用线绕电阻|0">



其中,定功率是TI的一项独特的技术,图5将定功率限制和一般的线性电流仿真电路作比较,左边的图为一般线性电流仿真电路曲线,MOS管的电流和VDS呈线性关系;右边的图为定功率曲线,从图中公式可以看到电流与VDS呈非线性。

当负载增加,如果没有定功率限制,图6中左上端的输出电流上升很快,输出电压降低,流过MOS管的功率很可能漂出SOR之外;如果加入了定功率限制功能,左下端的电压电流波形中电流上升很快,向输入电容充电之后下降很快,而且同时保持MOS管工作点一直在SOR之内。因此只要将定功率限制设定好,就可以不考虑负载的变化,节约了MOS管成本。



负载短路时,如果没有定功率限制,电流将会上冲并超过70A,15微秒后才能恢复到所设定的最大电流5A,这样大的电流幅度很可能损坏线路周边零件;加入功率限制功能后,电流上升幅度较小,只有20A,只要经过1微秒即可降到所设定的最大电流5A,而对于1微秒、20A的脉冲,MOS管完全工作在安全工作区之内。

对于-48V的一些热插拔产品,有TPS2390、2391、2398、2399,这些芯片都只有8脚,工作电压由-36到-80V,从应用线路看它们的应用很简单,基本上只要考虑最大电流设定,然后是计时电路和TI独特的设计功能叫做电流上升的速率。在TI的控制芯片中,很多的热插拔产品都会有一个叫做RAMP的引脚作电流上升速率的设定,通常通过一个电容来设定电流上升的斜率。

很多控制器的设计都是采用电压上升斜率控制,当热插拔控制器启动的时候,输出电压慢慢上升,但是输出电流上升的很快,而且输出电流上升的幅度根据不同的电容负载而不同,如果负载电容比较大,电流脉冲幅度相对很大,如此大的脉冲电流也会影响系统的正常操作。TPS239X系列采用电流上升斜率的导通方法,在启动的时候,输出电流的上升斜率可以依靠RAMP电容设定,RAMP电容越大,上升的斜率越慢,从而减少了系统噪音和冲击的影响。

TI的低电压热插拔产品分为两类:MOS管内置的产品和MOS外置的产品,如图7所示。MOS管内置的产品包含UCC3912、UCC3915、UCC3918和TPS2420/21等,这些产品的最大允许流过电流是5安培,工作电压由接近0V到12V,MOS外置的热插拔控制芯片有单路和双路控制芯片,两种单路的控制芯片有TPS2330和TPS2331,双路有TPS2300系列。

热插拔可以应用于很多场合,图8列出了不同设计应用所搭配的热插拔产品,可以根据该表选择适合的热插拔器件。



Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top