微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 同步降压转换器电路设计基础

同步降压转换器电路设计基础

时间:01-01 来源:电子工程专辑/Thomas 点击:

J. 总损耗功率的计算

  PWM集成电路功耗的计算:可根据制造商的规范说明书来进行。其典型的功耗在50mW和100mW之间。总功率计算要对进行上述计算并求和,可以得到功耗值约为653.1mW。由于最初的目标是2W, 因而在一级近似下有足够的余量。

K. 温度计算

  在功率计算的基础上,可以对有源器件进行稳态热计算。根据规范说明书,该值为功率乘以Rjc或Rja。要对功率回路上的组件进行热分析。规范说明书上应有关于电路板的详细说明,其中包括测量得到的热阻。例如,典型SO-8封装的Rja值为78°C/W、125°C/W或135°C/W,随电路板铜含量及面积的不同而变化。
=================================
19. Q1热计算: 0.0984W*135°C/W=13.284°C;上升超过25°C,则T最终=25°C+13.284°C=38.284°C; 20. Q2热计算: 0.2817W*135°C/W=38.03°C,上升超过25°C,T最终 =25°C+38.03°C=63.03°C。
=================================

L. 反馈回路的稳定性

  新的PWM控制芯片是为具有一组电压参考点的简单分压器网络而设计的。在降压转换器中,最常见的问题是输出电容的ESR零频率。由于f开关被3除,该值应较小。因而在这种条件下应为100kHz。对于典型的ESR为.13的150uF电容,Fesr等于8kHz。其方程如下:

F=1/(2*3.14*Resr*C输出)。

计算机仿真

  基本方程将用来计算LC输出和工作周期。可以利用脉冲电压源构建所需的一定频率和脉冲宽度的补偿电路来仿真这些驱动器。根据参数表,可以挑选一个低Ciss的MOSFET作为Q1,一个低Rds的器件作为底部的MOSFET Q2。选定了这些器件后,就可以载入Spice模型来仿真该电路的电气和热效应。该电路如图2中所示。

  电路文件使用的是制造商为用户提供的模型,大部分公司都会提供各自分立产品的Spice模型。Vin=12Vdc,Vout=1.6Vdc,频率=500kHz。

  由近似条件下运行所得的仿真结果,可以察看波形来确定组件的有源部分是否超过额定参数。功率也可以用工具计算以提高效率。可以将单独的组件隔离开来,或将器件的某个特定终端隔离开来。也可通过仿真栅极输入电流来察看峰值电流是否超过栅极驱动能力。图3给出了电流流入底部MOSFET栅极端的情形。可以察看峰值电流,调整栅极电阻或选用另一个输入电容较低的MOSFET。图3所示为电流流入底部MOSFET栅极端的波形。

  可利用所提供的计算工具进行瞬态分析,得出效率随时间的变化关系。从图4可见,效率在500kHz工作情况下随时间而增加。

  仿真过程是一个瞬态分析过程,因而可以察看顶部MOSFET漏极至源极的瞬时功率耗散,还可以看到平均功率耗散随时间的变化。热效应的正规分析要用平均功率耗散来计算。瞬时功率耗散可代入热瞬时分析模型来计算温度随时间的变化。其基础是RC时间常数方程。但是需要设定计算或仿真的热环境。图 5是利用Spice仿真MOSFET电气和热力学性能的模型。要注意带电压源和RC网络的周围环境的设置。图6为门驱动的结温度随时间的变化关系。

本文小结

  目前,在互联网上可以找到许多仿真工具,有一些半导体公司还在其网站上提供了在线仿真,每家公司对于这些工具的使用都有其自身的特点。集成电路厂商为了展示其芯片性能,通常要提供芯片模型以展示其产品的与众不同。对于功率组件公司,要提供分立器件模型。

  设计工具已经发展到从互联网就可以找到为用户准备的一级近似工具的地步。制造商推销的重点在于开发出便于用户使用的模型和工具。剩余的问题是仿真只能提供模型的信息,详细的寄生和布线问题并未解决,而且还存在精度和带宽问题,这些都是今后要继续解决的问题。

作者:
Thomas R. Winters
高级应用经理
分立功率技术业务部
快捷半导体公司

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top