牛奶成份检测仪光强检测电路设计原理
时间:11-05
来源:中国仪表展览网
点击:
1 引言
牛奶在人们的生活饮食中越来越普遍,实时快速准确的检测牛奶成份对提高牛奶质量和对实现乳业生产过程的自动化管理有重要意义。检测牛奶成份的方法有多种,化学分析方法仍然是准确度最高的检验方法,但是他很难适应短时间测试的需要,物理仪器测试法主要有利用超声波原理和光谱分析检测,目前国外的技术相对比较成熟,但仪器昂贵,不可能在中国普及,特别不可能在中小企业和乳牛场使用。本文介绍的牛奶成份测仪采用激光散透比来检测,精度比较准确、成本较低。
2 检测原理
激光散透比检测即用激光的入射平内同时90°处的散射光光强Is和检测0°处的透射光光强It的比值来表征测试牛乳蛋白质含量的光学参量。但是由于牛乳中存在两种散射大分子,所以很难准确地单独测出蛋白质和脂肪含量。通过化学研究,找出一种快速蛋白质熔解液(乙二氨四乙酸稀溶液)能够把蛋白质溶解为小分子,使牛乳稀溶液中只有脂肪是牛乳中的不溶的大分子测出脂肪,再测脂肪和蛋白质两相共存的牛乳稀溶液,通过建立理论关联模型便可求出蛋白质含量。在测量过程中光电流信号比较微弱,所以设计性能好的光强检测电路是很重要的。此仪器电路设计最关键的部分就是光强采样电路的设计,光强采样电路的设计合理与否直接影响到牛奶成份检测的准确度和精度。牛奶成份检测仪的结构框图如图1所示。
从半导体激光器发出波长为635 nm的非偏振光,平行准直入射试样盒,在透射光和散射光方向用光电二极管将光信号转化为电信号。光强检测电路由放大电路和A/D转化电路组成,放大电路将由光电二极管转化的微弱电信号放大为适合A/D转化的模拟电压。A/D转化电路将模拟电压转化为数字量。单片机是仪器的控制器,用于处理按键,读取采样值、计算并显示测量结果。
3 影响光电转化输出信号精度的原因
在此仪器的结构图可以看出,影响光电转化输出信号精度的因素有以下几个方面:
(1)半导体激光器发出的光具有不一致性,在一定的波长范围分布;半导体激光器对温度敏感,环境温度的变化和注入电流的热效应都会使激光器的阈值电流以及输出光功率发生变化。本仪器设计中采用分布反馈(Distributed Feed Back,DFB)半导体激光器,波长稳定性好,温度漂移约为0.08 nm/℃,频率和强度噪声低。
(2)光电二极管的性能参数直接影响输出信号的稳定性和精度。本仪器设计中采用日本滨松光子株式会社的S5226硅光二极管,该器件的性能参数如下:有效接收面积5.8×5.8 mm2;终端电容430 pF;分流电阻1 GΩ;暗电流100 pA;光谱响应范围190~1 000 nm;峰值灵敏度波长740 nm;峰值灵敏度约0.36 A/W;在635 nm处灵敏度约0.32 A/W;从以上参数可以看出,在激光发出的光的一致好的情况下,误差是非常小的。
4 光电转化电路的设计
光电转化电路将传感器光电二极管输出的微电信号放大,光电转换电路如图2所示。
硅光二极管处于反相偏置,使硅光二极管工作在其伏安特性的第三相限,光强与光电流呈线性关系,相对于零偏置这种形式的电路具有更低的噪声和更好的线性度。由于硅光二极管输出电流较小,因此为了减小运放的偏置电流对测量的影响,必须选取低偏置电流的运放;此外,温漂、失调电流、失调电压等参数也得考虑。综合考虑,选用Maxim公司的ICL7650运放,该芯片是利用动态校零技术和CMOS工艺制作的斩波稳零式高精度运放,输入偏置电流在25℃时为1.5 pA、输入失调电压为1μV、失调电压温度系数为0.01μV/℃,输入电阻可以达到10×12 Ω,此外其共模抑制比达到130 dB。ICL7650应用时需接2个0.1 μF的调零电容,为了稳定运算放大器输出信号的直流分量,需将钳位端(CLAMP)连接运算放大器的输入端和输出端,这样芯片会在输出达到饱和之前,在钳位端和输出端之间建立一个电流通道,从而防止电荷在校零和寄存电容上继续积累,减少电容的充放电恢复时间,使输出电压得到稳定。由于是斩波稳零器件该芯片内部晶振产生200 Hz内部节拍频率,为减小输出信号的噪声,输出端可接1个0.1μF的电容C4去除高频信号。为防止产生自激振荡在输入与输出之间接1个0.1 μF的补偿电容C1,对于增益电阻可采用高精度的可调电阻,输出信号幅度与R1成正比。R1取值大一些可以增加信噪比。但R1取值要受输出电压幅度的限制,通常的高分辨力的A/D转换器基准电压为3.3 V,其模拟量输入范围为0~3.3 V,为了与A/D转换电路相切配,光电转换电路的Uo输出最好不应超过3.3 V。
5 A/D转化电路的设
牛奶在人们的生活饮食中越来越普遍,实时快速准确的检测牛奶成份对提高牛奶质量和对实现乳业生产过程的自动化管理有重要意义。检测牛奶成份的方法有多种,化学分析方法仍然是准确度最高的检验方法,但是他很难适应短时间测试的需要,物理仪器测试法主要有利用超声波原理和光谱分析检测,目前国外的技术相对比较成熟,但仪器昂贵,不可能在中国普及,特别不可能在中小企业和乳牛场使用。本文介绍的牛奶成份测仪采用激光散透比来检测,精度比较准确、成本较低。
2 检测原理
激光散透比检测即用激光的入射平内同时90°处的散射光光强Is和检测0°处的透射光光强It的比值来表征测试牛乳蛋白质含量的光学参量。但是由于牛乳中存在两种散射大分子,所以很难准确地单独测出蛋白质和脂肪含量。通过化学研究,找出一种快速蛋白质熔解液(乙二氨四乙酸稀溶液)能够把蛋白质溶解为小分子,使牛乳稀溶液中只有脂肪是牛乳中的不溶的大分子测出脂肪,再测脂肪和蛋白质两相共存的牛乳稀溶液,通过建立理论关联模型便可求出蛋白质含量。在测量过程中光电流信号比较微弱,所以设计性能好的光强检测电路是很重要的。此仪器电路设计最关键的部分就是光强采样电路的设计,光强采样电路的设计合理与否直接影响到牛奶成份检测的准确度和精度。牛奶成份检测仪的结构框图如图1所示。
从半导体激光器发出波长为635 nm的非偏振光,平行准直入射试样盒,在透射光和散射光方向用光电二极管将光信号转化为电信号。光强检测电路由放大电路和A/D转化电路组成,放大电路将由光电二极管转化的微弱电信号放大为适合A/D转化的模拟电压。A/D转化电路将模拟电压转化为数字量。单片机是仪器的控制器,用于处理按键,读取采样值、计算并显示测量结果。
3 影响光电转化输出信号精度的原因
在此仪器的结构图可以看出,影响光电转化输出信号精度的因素有以下几个方面:
(1)半导体激光器发出的光具有不一致性,在一定的波长范围分布;半导体激光器对温度敏感,环境温度的变化和注入电流的热效应都会使激光器的阈值电流以及输出光功率发生变化。本仪器设计中采用分布反馈(Distributed Feed Back,DFB)半导体激光器,波长稳定性好,温度漂移约为0.08 nm/℃,频率和强度噪声低。
(2)光电二极管的性能参数直接影响输出信号的稳定性和精度。本仪器设计中采用日本滨松光子株式会社的S5226硅光二极管,该器件的性能参数如下:有效接收面积5.8×5.8 mm2;终端电容430 pF;分流电阻1 GΩ;暗电流100 pA;光谱响应范围190~1 000 nm;峰值灵敏度波长740 nm;峰值灵敏度约0.36 A/W;在635 nm处灵敏度约0.32 A/W;从以上参数可以看出,在激光发出的光的一致好的情况下,误差是非常小的。
4 光电转化电路的设计
光电转化电路将传感器光电二极管输出的微电信号放大,光电转换电路如图2所示。
硅光二极管处于反相偏置,使硅光二极管工作在其伏安特性的第三相限,光强与光电流呈线性关系,相对于零偏置这种形式的电路具有更低的噪声和更好的线性度。由于硅光二极管输出电流较小,因此为了减小运放的偏置电流对测量的影响,必须选取低偏置电流的运放;此外,温漂、失调电流、失调电压等参数也得考虑。综合考虑,选用Maxim公司的ICL7650运放,该芯片是利用动态校零技术和CMOS工艺制作的斩波稳零式高精度运放,输入偏置电流在25℃时为1.5 pA、输入失调电压为1μV、失调电压温度系数为0.01μV/℃,输入电阻可以达到10×12 Ω,此外其共模抑制比达到130 dB。ICL7650应用时需接2个0.1 μF的调零电容,为了稳定运算放大器输出信号的直流分量,需将钳位端(CLAMP)连接运算放大器的输入端和输出端,这样芯片会在输出达到饱和之前,在钳位端和输出端之间建立一个电流通道,从而防止电荷在校零和寄存电容上继续积累,减少电容的充放电恢复时间,使输出电压得到稳定。由于是斩波稳零器件该芯片内部晶振产生200 Hz内部节拍频率,为减小输出信号的噪声,输出端可接1个0.1μF的电容C4去除高频信号。为防止产生自激振荡在输入与输出之间接1个0.1 μF的补偿电容C1,对于增益电阻可采用高精度的可调电阻,输出信号幅度与R1成正比。R1取值大一些可以增加信噪比。但R1取值要受输出电压幅度的限制,通常的高分辨力的A/D转换器基准电压为3.3 V,其模拟量输入范围为0~3.3 V,为了与A/D转换电路相切配,光电转换电路的Uo输出最好不应超过3.3 V。
5 A/D转化电路的设
- 一种实现载波监听多点接入/冲突检测的多主RS485总线(11-28)
- 智能蓄电池监测系统的研制(01-06)
- 毫欧姆电阻在汽车电子系统中的应用(05-11)
- 新型放大器实现高性能电流检测(08-18)
- 模拟乘法器提高高边电流检测的测量精度(09-22)
- 电路板的自动检测技术(01-08)