混合信号IC──复杂电源管理组件的设计挑战及解决方案
时间:11-03
来源:ADI
点击:
随着系统内电源数量的增多,为了确保其安全、经济、持续和正常的工作,对电源轨进行监测和控制变得非常重要,特别是在使用微处理器时。确定电压轨是否处于工作范围内,以及该电压相对于其它电压轨是否按照正确的时序上电或断电,这些对于系统执行的可靠性和安全性来说都是至关重要的。例如FPGA,在向组件提供5V I/O(输入/输出)电压之前,必须先施加3.3V的核心电压,并持续至少20ms,以避免组件上电时受到损坏。对于系统的可靠性来说,满足这样的时序要求就像要保证组件在规定的电源电压和温度范围内工作一样至关重要。
同时,电源轨数量也在显著增加。一些复杂的系统,如LAN(局域网络)交换机和移动电话基站,线路卡通常会包含10路或更多电压轨;即使是对成本敏感的消费性系统,如等离子电视,也可能具有多达15路的独立电压轨,其中许多电压轨都需要进行监控和时序控制。在高阶系统中,每个DSP组件会需要多达四个独立的电源。而在更多情况下,单一系统中可能存在着大量的多电源组件,包括FPGA、ASIC、DSP、微处理器和微控制器(以及模拟组件)。
电压监控和时序控制有时会变得极为复杂,特别是当一个系统必须设计为能够支持上电时序控制和断电时序控制,并能够在工作期间的不同时间点上对不同电源轨上的所有可能故障状况均产生多种响应时。中心电源管理控制器是解决这个难题的最佳方案。
设计风险与电源数量、组件数量和系统复杂程度成正比,外部因素也会增加风险。例如,如果在初始设计阶段没有完整地定义出主ASIC的特性,那么电源设计工程师必须用硬联机实现电压监控阈值和时序控制,但这些都可能会随着ASIC技术指标的改变而产生变化。故对于任何一个中心电源系统管理器来说,易于调整电源的方法将会是非常有用的。
基本监控
图1所示的是监控多任务电压轨的简单方法。其中,每路电压轨都使用独立的电路。电阻分压器将电压轨按比例降低,并为每一路电源设置一个欠压跳变点。所有的输出被连接在一起,产生通用电源良好讯号。更小的制程尺寸正推动核心电压向更低的方向发展。低压时余量的不足可能会引起预想不到的组件行为。随着核心电压的下降,对高精密度电压监控器的要求将更加苛刻,如图2所示。
同时,电源轨数量也在显著增加。一些复杂的系统,如LAN(局域网络)交换机和移动电话基站,线路卡通常会包含10路或更多电压轨;即使是对成本敏感的消费性系统,如等离子电视,也可能具有多达15路的独立电压轨,其中许多电压轨都需要进行监控和时序控制。在高阶系统中,每个DSP组件会需要多达四个独立的电源。而在更多情况下,单一系统中可能存在着大量的多电源组件,包括FPGA、ASIC、DSP、微处理器和微控制器(以及模拟组件)。
电压监控和时序控制有时会变得极为复杂,特别是当一个系统必须设计为能够支持上电时序控制和断电时序控制,并能够在工作期间的不同时间点上对不同电源轨上的所有可能故障状况均产生多种响应时。中心电源管理控制器是解决这个难题的最佳方案。
设计风险与电源数量、组件数量和系统复杂程度成正比,外部因素也会增加风险。例如,如果在初始设计阶段没有完整地定义出主ASIC的特性,那么电源设计工程师必须用硬联机实现电压监控阈值和时序控制,但这些都可能会随着ASIC技术指标的改变而产生变化。故对于任何一个中心电源系统管理器来说,易于调整电源的方法将会是非常有用的。
基本监控
图1所示的是监控多任务电压轨的简单方法。其中,每路电压轨都使用独立的电路。电阻分压器将电压轨按比例降低,并为每一路电源设置一个欠压跳变点。所有的输出被连接在一起,产生通用电源良好讯号。更小的制程尺寸正推动核心电压向更低的方向发展。低压时余量的不足可能会引起预想不到的组件行为。随着核心电压的下降,对高精密度电压监控器的要求将更加苛刻,如图2所示。
图1:基于比较器的欠压检测,提供通用电源良好输出,适用于3路电源系统。
|
- 开关电源的开关损耗(11-25)
- 电源产品可靠性设计方法概述 (11-26)
- 数字技术在开关电源控制中的应用和发展(11-27)
- 几种实用的直流开关电源保护电路(11-27)
- 一种高压开关电源的设计(11-27)
- 平面变压器在开关电源中应用的优越性分析(11-27)