永磁同步电动机在永磁同步电机矢量控制系统的应用
着眼于如何使电机获得幅值恒定的圆形旋转磁场(即正弦磁通)。三相负载相电压可以用一个空间电压矢量(目标矢量)来代替。通过控制三相逆变器开关器件的通断,可以得到用于合成目标矢量的基本矢量。图2所示是典型的三相逆变器电路及其SVPWM向量扇区图。图中引入了A、B、C桥臂的开关变量Sa、Sb、Sc,当某桥臂的上管导通而下管关断时,其开关变量值为1;当下管导通,上管关断时,开关变量值为0.因此,整个三相逆变器共有8种开关状态,即(SaSbSc)为(000)到(111),分别对应逆变器的8种输出电压矢量,其中2种为零矢量,6种非零矢量可将平面分为6个扇区。图3所示是产生SVPWM的具体实现步骤。其实现可通过Simulink模块库来搭建。
基于正弦波的永磁同步电动机(简称PMSM)具有功率密度大、效率高、转子损耗小等优点,在运动控制领域得到了广泛的应用。矢量控制主要采用脉宽调制(PWM)技术来控制输出电压并减小谐波。其中,SVPWM具有系统直流母线电压利用率高、开关损耗小、电动机转矩波动小等优越性能,因此,PMSM的矢量控制已被证明是一种高性能的控制策略。
本文借助PMSM数学模型,分析了同步电动机的矢量控制原理和SVPWM调制方法,同时借助Matlab强大的仿真建模能力,构建了SVPWM同步电动机矢量控制系统的仿真模型,并通过仿真实验予以验证。
1 PMSM数学模型
永磁同步电机的矢量控制基于电机的dqO坐标系统。在建立数学模型前,可先作以下几点假设:即忽略铁心饱和,不计涡流及磁滞损耗,转子上没有阻尼绕组,永磁材料的电导率为零,电机电流为对称的三相正弦电流。在上述假设的基础上,运用坐标变换理论,便可得到dqO轴下PMSM数学模型。
该模型的电压、磁链、电磁转矩和功率方程(即派克方程)如下:
2 矢量控制系统
由于异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。上世纪70年代西门子工程师F.Blaschke首先提出异步电机矢量控制理论来解决交流电机转矩控制问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。简单的说,矢量控制就是将磁链与转矩解耦,有利于分别设计两者的调节器,以实现对交流电机的高性能调速。
2.1 矢量控制基本原理
矢量控制的基本思想是在磁场定向坐标上,将电流矢量分解成两个相互垂直,彼此独立的矢量id(产生磁通的励磁电流分量)和iq(产生转矩的转矩电流分量),也就是说,控制id和iq便可以控制电动机的转矩。
按转子磁链定向的控制方法(id=0)就是使定子电流矢量位于q轴,而无d轴分量。此时转矩Te和iq呈线性关系(由上转矩方程),因此,只要对iq进行控制,就可以达到控制转矩的目的。既定子电流全部用来产生转矩,此时,PMSM的电压方程可写为:
通过上面的简化过程可以看出,只要准确地检测出转子空间位置的θ角,并通过控制逆变器使三相定子的合成电流(磁动势)位于q轴上,那么,通过控制定子电流的幅值,就能很好地控制电磁转矩。此时对PMSM的控制,就类似于对直流电机的控制。
2.2 矢量控制调速系统的控制组成
在电机起动时,就应当通过软件进行系统初始定位,以获得转子的实际位置,这是永磁同步电机实现矢量控制的必要条件。首先,应通过转子位置传感器检测出转子角位置ωr,同时计算出转子的速度n,然后检测定子(任两相)电流并经矢量变换,以得到检测值id和iq,然后分别经PI调节器输出交直流轴电压值ud和uq,再经过坐标变换后生成电压值uα和uβ,最后利用SVPWM方法输出6脉冲逆变器驱动控制信号。图l所示是PMSM矢量控制原理图。
由图1可知,由外环的转速和内环的电流环可以构成PMSM的双闭环控制系统。该控制系统中应用了空间电压矢量(SVPWM)脉宽调制技术,由于SVPWM的开关损耗小、电压利用率高、谐波少,因而大大提高了PMSM的调速性能。
3 SVPWM原理
SVPWM的主要思想是:以三相对称正弦波电压供电时三相对称电动机定子理想磁链圆为参考标准,以三相逆变器不同开关模式作适当的切换,从而形成PWM波,以所形成的实际磁链矢量来追踪其准确磁链圆。传统的SPWM方法从电源的角度出发,以生成一个可调频调压的正弦
- 正弦波输出逆变电源的设计(07-12)
- 正弦波逆变器与UPS应用的区别(10-24)
- 单相正弦波逆变器容错控制研究(11-13)
- 晶闸管整流电路的功率因数是怎么定义的 与哪些因数有关?六个二极管的整流电路画法(04-02)
- LC正弦波振荡器电路设计图(08-12)
- 小型无线充电电子电路设计图(08-12)