微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 硬件工程师文库 > DSP的大功率开关电源的设计方案

DSP的大功率开关电源的设计方案

时间:12-01 来源:维库 点击:

      摘要:本文介绍了一种基于DSP的大功率开关电源的设计方案。该电源采用半桥式逆变电路拓扑结构,应用脉宽调制和软件PID调节技术实现了电压的稳定输出。最后,给出了试验结果。试验表明,该电源具有良好的性能,完全满足技术规定要求。

  0 引 言

  信息时代离不开电子设备,随着电子技术的高速发展,电子设备的种类与日俱增,与人们的工作、生活的关系也日益密切。任何电子设备又都离不开可靠的供电电源,它们对电源供电质量的要求也越来越高。

  目前,开关电源以具有小型、轻量和高效的特点而被广泛应用于电子设备中,是当今电子信息产业飞速发展不可缺少的一种电源。与之相应,在微电子技术发展的带动下,DSP芯片的发展日新月异,因此基于DSP芯片的开关电源拥有着广阔的前景,也是开关电源今后的发展趋势。

  1 电源的总体方案

  本文所设计的开关电源的基本组成原理框图如图1所示,主要由功率主电路、DSP控制回路以及其它辅助电路组成。

  开关电源的主要优点在"高频"上。通常滤波电感、电容和变压器在电源装置的体积和重量中占很大比例。从"电路"和"电机学"的有关知识可知,提高开关频率可以减小滤波器的参数,并使变压器小型化,从而有效地降低电源装置的体积和重量。以带有铁芯的变压器为例,分析如下:

图1 系统组成框图

  设铁芯中的磁通按正弦规律变化,即φ= φMsinωt,则:

  式中,EM= ωWφ M=2πfWφM,在正弦情况下,EM=√2E,φM=BMS,故:

  式中,f为铁芯电路的电源频率;W 为铁芯电路线圈匝数;BM为铁芯的磁感应强度;S为铁芯线圈截面积。

  从公式可以看出电源频率越高,铁芯截面积可以设计得越小,如果能把频率从50 Hz提高到50 kHz,即提高了一千倍,则变压器所需截面积可以缩小一千倍,这样可以大大减小电源的体积。

  综合电源的体积、开关损耗以及系统抗干扰能力等多方面因素的考虑,本开关电源的开关频率设定为30 kHZ。

  2 系统的硬件设计

  2.1 功率主电路

  本电源功率主回路采用"AC-DC-AC—DC"变换的结构,主要由输入电网EMI滤波器、输人整流滤波电路、高频逆变电路、高频变压器、输出整流滤波电路等几部分组成,如图2所示。

图2 功率主电路原理图

  其基本工作原理是:交流输入电压经EMI滤波、整流滤波后得到直流电压,通过高频逆变器将直流电压变换成高频交流电压,再经高频变压器隔离变换,输出所需的高频交流电压,最后经过输出整流滤波电路,将高频变压器输出的高频交流电压整流滤波后得到所需要的高质量、高品质的直流电压。如图3所示为交流输入电压到最后输出所需直流电压的各环节电压波形变换流程。

图3 功军主回路的电压波形变化

 

      摘要:本文介绍了一种基于DSP的大功率开关电源的设计方案。该电源采用半桥式逆变电路拓扑结构,应用脉宽调制和软件PID调节技术实现了电压的稳定输出。最后,给出了试验结果。试验表明,该电源具有良好的性能,完全满足技术规定要求。

  0 引 言

  信息时代离不开电子设备,随着电子技术的高速发展,电子设备的种类与日俱增,与人们的工作、生活的关系也日益密切。任何电子设备又都离不开可靠的供电电源,它们对电源供电质量的要求也越来越高。

  目前,开关电源以具有小型、轻量和高效的特点而被广泛应用于电子设备中,是当今电子信息产业飞速发展不可缺少的一种电源。与之相应,在微电子技术发展的带动下,DSP芯片的发展日新月异,因此基于DSP芯片的开关电源拥有着广阔的前景,也是开关电源今后的发展趋势。

  1 电源的总体方案

  本文所设计的开关电源的基本组成原理框图如图1所示,主要由功率主电路、DSP控制回路以及其它辅助电路组成。

  开关电源的主要优点在"高频"上。通常滤波电感、电容和变压器在电源装置的体积和重量中占很大比例。从"电路"和"电机学"的有关知识可知,提高开关频率可以减小滤波器的参数,并使变压器小型化,从而有效地降低电源装置的体积和重量。以带有铁芯的变压器为例,分析如下:

图1 系统组成框图

  设铁芯中的磁通按正弦规律变化,即φ= φMsinωt,则:

  式中,EM= ωWφ M=2πfWφM,在正弦情况下,EM=√2E,φM=BMS,故:

  式中,f为铁芯电路的电源频率;W 为铁芯电路线圈匝数;BM为铁芯的磁感应强度;S为铁芯线圈截面积。

从公式可以看出电源频率越高,铁芯截面积可以设计得越小,如果能把频率从50 Hz提高到50 kHz,即提高了一

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top