基于DSP的光纤光栅解调系统的电路设计
0 引言
光纤布拉格光栅传感器(FBGS)是用光纤布拉格光栅(FBG)作敏感元件的功能型光纤传感器,可用于直接检测温度和应变,以及与温度和应变有关的其他许多物理量和化学量的间接测量。在光纤布拉格光栅传感器的应用研究中,波长解调是一个重要的方面。目前限制光纤光栅传感器应用的最主要障碍是传感信号的解调。波长解调方法主要有光谱仪、斜边滤波法、可调谐滤波法、干涉扫描法、匹配光栅法等。但是,在这几种方法中,光谱仪成本较高,斜边滤波法的分辨率较小,干涉仪没有好的重复性,而可调谐滤波器的扫描周期较长。因此,近年来,匹配光栅法越来越受到人们的青睐。为此,文中介绍了一种简单、廉价且由两个并联的匹配光栅解调来检测光纤光栅传感器的系统设计方法。
1双光栅匹配原理
双光栅匹配系统示意图如图1所示。宽带光源发出的光经3 dB耦合器进入传感FBG。再由FBG反射后进人两路匹配光栅,对应的两个光电探测器得到与其对应波长有关的光信号,然后由光电探测器将其转换为电信号并进入信号采集处理电路提取有用信号,最后由后续信号处理系统实现数据的采集与处理。
图1中,PD1和PD2为光电探测器,光电探测器所探测到的光功率P为:
其中I1(λ)和I2(λ)分别为传感光栅和匹配光栅的反射功率谱密度函数。两者的反射功率谱函数均可用高斯函数近似表示:
式中,I0为反射谱强度峰值;λs为反射谱强度为I0时对应的波长值;△λs为反射谱的3 dB带宽。一般情况下,光电探测器所探测到的光功率的大小与传感光栅和匹配光栅的反射谱的卷积大小成正比。传感光栅的中心波长λc与匹配光栅的中心波长λp的差值越小,对应的卷积值越大。由于△λ大于阈值△λmin时,卷积值过小可能无法继续解调,因此,解调范围会受到限制。
普通的匹配法只有一个传感光栅一个匹配光栅,对应只有一个△λ。当该△λ≥△λmin时,解调系统将无法继续解调。对于双光栅匹配解调系统,传感光栅与两个并联的匹配光栅的中心波长近似相等,但略有差别。三者关系为:λp1<λc<λp2,λp1和λp2分别表示两个匹配光栅的中心波长。λc是传感光栅的中心波长。传感光栅在外界应力作用下时,△λ1=?λc-λp1?,△λ2=?λc-λp2?;当λc增大时△λ1增大,△λ2减小;当λc减小时,△λ1减小,△λ2增大。图2所示为△λ1、△λ2和λc三者的关系图,其中△λmin是光电探测器可以探测到的最小值。因此,根据图2可知,在理论上,双光栅匹配解调系统总是至少有一个光电探测器可以探测到可用光信号。
2 基于DSP的解调系统设计
2.1 系统硬件设计
匹配光栅反射回来的光入射到光电探测器(PD)上可转换为电信号。光电转换部分和信号采集部分主要完成对PD输出电信号的采集,采集到的信号再转化为数字信号由DSP进行处理。DSP主要完成数据的插值运算和寻峰处理,并根据处理结果反馈给DSP,由DSP依照反馈信号控制步进电机完成下一步的解调工作,其系统硬件框图如图3所示。
为了实现高精度的数据采样,本系统选用美国AD公司推出的一种12位带并行微机接口的逐次逼近型模/数转换芯片AD1674来实现系统的模数转换,AD1674内部自带采样保持器(SHA)、10V基准电压源、时钟源以及可和微处理器总线直接接口的暂存/三态输出缓冲器。
本系统采用TMS320VC5402作为主控芯片。这种定点DSP芯片可实现光纤光栅传感信号的处理、步进电机的控制和显示等。该芯片具有强大的数据运算和处理功能,利用其RPT和MAC指令可以在单指令周期内实现乘累加运算。其灵活的循环缓冲区和高效的C语言可使TMS320VC5402方便地实现数据的循环寻址与卷积运算,从而实现高速度解调。
2.2 系统软件设计
DSP系统的软件部分主要由初始化程序、线性插值子程序或者曲线拟合子程序、显示程序、驱动程序、中断服务程序等几部分组成,可以将A/D转换和串行通讯代码放在中断服务程序中来实现。
初始化程序用于完成DSPI/O口、内部A/D转换器、串行口、中断等资源的初始化。为了协调A/D转换和步进电机的控制,可由DSP发出控制信号来控制步进电机,以使经过A/D转换所得的数字信号与加在匹配光栅上的步数一一对应。显示部分的程序可将此数字信号经代数变换转换为直接表示应力的数字量,然后通过查表动态实现应力显示。
当匹配光栅反射波长与光纤光栅反射波的中心波长重叠时
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 达芬奇数字媒体片上系统的架构和Linux启动过程(06-02)
- FPGA的DSP性能揭秘(06-16)
- 用CPLD实现DSP与PLX9054之间的连接(07-23)
- DSP+FPGA结构在雷达模拟系统中的应用(01-02)