基于DSP 的电压闪变监测系统设计与实现
摘要: 电压波动和闪变是衡量电能质量的重要指标。在对IEC 提出的电压闪变测量方法进行分析的基础上,利用间接解调法对FFT 计算结果中引起的幅值衰减进行修正,从而提高了离散瞬时闪变值算法的精度。系统用DSP 实现电压闪变信号的采集和处理,并给出了软件设计方法。实验证明:该设计能很好地满足电能检测的要求,同时具有良好的应用前景。
0 引言
随着电力市场商品化的发展,用户对电能质量的要求越来越重视。然而,随着各种冲击性负荷、非线性负荷的大量使用,造成了电网负荷的急剧变化。电网谐波、电压波动、闪变、三相电压不平衡等问题时有发生,严重影响了电能质量,给电力系统的安全运行带来直接或潜在的危害。
电压波动和闪变是衡量电能质量的重要指标。为了抑制和治理电压波动和闪变,电网已经投入了一定的补偿设备。这些设备的研制和整定均需要准确详细的闪变参数,以提供正确的治理决策,因此,对电压波动和闪变实时监测,即准确测量短时间闪变值Pst,长时间闪变值Plt是治理电压波动和闪变的基础。
IEC 6100-4-15和GB 123262-2000给出了完整的闪变测试系统结构框图,以及有关反映人脑对频率选择特性的传递函数,根据该框图就可以设计符合IEC 标准的闪变测试系统。但是利用该标准计算电压闪变值过程繁琐,对硬件要求较高。文献[5]中提出了离散的瞬时闪变值计算方法,采用间接解调的方法计算闪变,提高了运算速度并且减小了系统对硬件处理器的要求,缺点是间接解调法存在频谱泄漏,在高频处幅值衰减,精度较差。
本文采用离散的瞬时闪变值计算方法,利用FFT 对采样后的离散数据进行变换,并针对FFT计算结果中引起的幅值衰减做修正处理,减少了因不同频率调幅波引起电压波动输出的瞬时闪变视感度S(t)的误差。采用上述改进方法,在DSP平台上实现的电压闪变监测系统具有测量精度高、速度快等特点。
1 电压闪变计算方法
波动的电网电压可由一个稳定的工频电压作载波,叠加一个有规则或无规则的调幅波构成,调幅波可包含单个或多个频率分量。瞬时波动电压可以用一组复合振幅调制方程来表示:
式中:Urms为电网额定电压有效值;fsys为电网工频电压频率;fn为调幅电压波动频率;ΔUn为调幅波中频率为fn的调幅波电压的调幅系数。
IEC 定义短时间闪变值Pst的算法如下:首先,对于随机变化负荷产生的电压波动,在足够长观测时间T(至少10 min) 内对S( t) 进行等间隔采样;然后,将S(t)数据分级,并统计各级别数据分布概率,再由各级别数据分布概率得到累积概率分布函数(CPF);最后,根据CPF 作出闪变程度的统计*定,即计算Pst。可见,S( t) 直接反映了电压波动引起灯光闪烁对人视感度的影响,是计算Pst的关键。
定义瞬时视感度S( t) 曲线上的离散点值为瞬时闪变值Pi,根据IEC 定义的Pst的计算方法,Pst的计算步骤可描述为:
(1) 对连续电压信号u(t)采样,形成离散电压信号u(n),对u( n) 每半个周波计算一次电压均方根值,得到电压均方根值序列U(n),形成离散电压均方根值曲线。
(2) 对U(n) 以时间进行等间隔划分,得到划分内电压均方根值序列Ui(n),i = 1,2,…,N,N为观测时间T 内划分数的总数,且N = T /τ,对每个划分中的均方根值序列进行傅里叶分析(FFT),求出离散频谱序列Ufm,m = 1,2,…,M,M为频谱频率的上限,进而得到相应频率为fm的正弦波电压均方根值曲线的峰值,即频率为fm的电压波动值:
(3 ) 定义第i 个电压均方根值序列划分Ui(n)的瞬时闪变值Pi为相应频谱上各频率fm对应瞬时闪变值之和,即:
式中:dum为单位瞬时闪变值时频率fm对应的正弦电压波动值。
(4) 将观测时间T 内各个划分对应的瞬时闪变值Pi分为L 级,由于Pi是等间隔数据,可通过分布在相应等级数据的频率来表示该等级中数据分布概率P(l):
式中:Nl为分布在l 等级中的数据个数。
(5) 依据数据分布概率P(l)作出直方图,再由直方图形成CPF。由瞬时闪变值Pi得出的CPF 反应了瞬时闪变值Pi超过一定限值的时间与观测时间T 的百分比。对于随机变化负荷的瞬时闪变值CPF 曲线,常用5 个规定值计算短时间闪变值Pst:
式中:P0. 1、P1、P3、P10和P50分别为观测时间T 内瞬时闪变值Pi超过0. 1%、1%、3%、10% 和50%时间的觉察单位值。
(6) 根据短时间闪变值统计计算出长时间闪变值Ph(2 h):
2 间接解调法误差分析及修正
对采样后计算得到的电压均方根值序列Ui(n)进行频谱分析时,由于FFT 存在频谱泄露和栅栏效应,从而导
DSP TMS320F2812 电压闪变检测系统 相关文章:
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 达芬奇数字媒体片上系统的架构和Linux启动过程(06-02)
- FPGA的DSP性能揭秘(06-16)
- 用CPLD实现DSP与PLX9054之间的连接(07-23)
- DSP+FPGA结构在雷达模拟系统中的应用(01-02)