微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 基于DSP的高速数据采集系统设计方案

基于DSP的高速数据采集系统设计方案

时间:06-25 来源:维库开发网 点击:

DSP和采集芯片的连接采用的是总线连接方式,进行数据采集时,DSP通过总线的D0–D7 写配置寄存器可以激活相应通道。配置寄存器中的位直接映射到相应通道,D0 控制通道0,D7 控制通道7 。把任意一位设为高电平,将激活相应的输入通道;同样,把任意一位设为低电平,将禁用相应通道。对少于8通道的器件,其中几位没有任何功能。写配置寄存器时,将CS和WR 设为低电平,然后将D0–D7 位装载到并行总线,再将WR 置为高电平。数据在WR 的上升沿锁存。在转换时序的任意时刻都能够对配置寄存器进行写操作。上电时,在启动转换之前写入配置寄存器,以选择有效通道。

内部时钟模式下启动一次转换,需在采样时间内将CONVST 置为低电平。当CONVST 为低电平时,T/H 捕获信号,在CONVST 的上升沿转换开始。一旦能够读取转换结果,转换结束信号(EOC)将给出一个低电平脉冲。当最后一个通道的转换结果可以被读取时,最后转换结束信号(EOLC)跳变到低电平。

在EOLC 的下降沿,DSP 将CS 和RD 置为低电平,把第一个转换结果置于并行总线。RD 连续的低电平脉冲将转换结果顺次放到总线上。时序中最后一个转换结果读取后,额外的读脉冲可以使指针重新指向第一个转换结果。

3.3 计算机应用程序

计算机应用程序主要完成数据的人机交互功能,用户通过应用程序配置监测系统、控制数据采集的过程和显示采集的数据。

4、结论

本系统采用DSP 和MAX125 进行数据采集,通过USB 进行数据传输。对单路的数据采集,可以实现800kSPS 的实时数据传输,8 路同步采集可以实现400kSPS 的实时数据传输。该系统的使用方法简便、快捷、实时监测性好,可扩展性良好,抗干扰能力强。适当地改进硬件电路和程序就可以对更多采集点进行采集和监测。基于USB 和单总线的便携式监测,必将被众多领域广泛应用。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top