基于DSP的宽带雷达多片流水分段脉压处理平台设计
时间:08-02
来源:作者:王国庆,申俊杰,张旭峰
点击:
1 引 言
作为一种探测目标信息的工具,雷达在现代战争中发挥着举足轻重的作用。在雷达回波信号处理中,通常利用线性调频信号脉冲压缩技术来获得高的距离分辨率。他有效地解决了雷达作用距离与距离分辨率之间的矛盾,可以在保证雷达作用距离的情况下提高雷达的距离分辨力。数字脉冲压缩就是利用数字信号处理的方法来实现雷达信号的脉冲压缩,分为时域和频域两种实现方式。时域脉压常用数字滤波器实现,而频域脉压常用专用的FFT芯片或DSP完成。一般而言,对于小时宽带宽积信号,用时域脉压较好;但对于大时宽带宽积信号,用频域脉压较好。随着通用DSP芯片本身处理能力的不断提高,基于并行DSP芯片的雷达信号处理系统基本能够满足雷达脉冲压缩信号处理实时性的需求。
本文针对雷达回波的实时脉冲压缩处理,首先分析了频域脉压处理方法,介绍了分段脉压原理。然后研究了基于DSP的多片流水分段脉压设计,以某宽带雷达回波为例,提出了基于4片ADSP-TS101芯片的高性能并行DSP硬件处理平台设计。最后给出了硬件实现和实验结果。
2 频域脉压实现分析
对接收到的信号作数字脉压,等同于信号通过一个加权的匹配滤波器。从时域来说,输出为信号与加权的匹配滤波器的线性卷积,等价于二者在频域的乘积。需要注意的是两离散信号频率域相乘相当他们在时域作圆卷积,为使圆卷积与线性卷积等价,待处理的信号须加零延伸,避免圆卷积时发生混叠。
设输入序列x(n)长度为L,系统冲击响应h(n)长度为M(M<L),输出y(n)。对于频域处理,其运算为:

式(1)实际上是圆卷积运算,在运算时,x(n)和h(n)必须至少补零到L+M-1点,等到x(n)完全读入后,开始脉压运算,得到的y(n)有效输出长度为L点。因此频域脉压处理时间大致分为数据块读入读出时间和脉压运算时间。总运算量包括L点x(n)数据输入、L+M-1点复FFT,L+M-1点复点乘、L+M-1点复IFFT以及L点y(n)数据输出。
当输入序列x(n)的长度L》M,直接做L+M-1点的脉压不仅运算量大、存储单元多,而且有很大的数据读入读出延迟。可以采用重叠保留法进行分段脉压处理。设x(n)均匀分段,每段长度为N(满足N≥M,N+M-1接近2的整数次幂),在每段后面再补上后一段的前M-1个输入序列值,组成N+M-1点序列,若为最后一段,则补M-1个零。每个N+M-1点序列与h(n)脉压后,输出的结果取前N点为每段的有效输出。这样按顺序拼接在一起即可得到输入序列x(n)的脉压输出。其原理如图1所示。
当分段脉压处理时,可以采用多个分段同时脉压的并行处理技术来减少整个脉压过程的处理时间。流水线技术(Pipeline)为并行处理系统设计中实现时间并行性提供了一种有效方法,他将输入流水线的任务分为一串子任务,相继的任务不断流人流水线,利用子任务在执行时间上的重叠(Time Interleaving),使得每个子任务都处在整个操作流程不同的处理段中,且保持在不同的完成阶段来达到操作级并行。
在忽略数据内部交换以及脉压前的数据浮点化等运算时间的前提下,可以将每段脉压任务大致分为数据输入、数据脉压和脉压结果输出三个子任务。若各段分段脉压过程均采用流水线技术操作,相邻两段脉压任务分别由不同的DSP完成。那么相邻两段脉压过程进入流水的时间仅相差数据输入的操作时间,流水操作如图2所示。

下面以某宽带雷达为例,在输入序列点数和分段重叠点数确定的情况下,采用AD公司的高性能定/浮点ADSP-TS101芯片,分析各流水任务时间、流水操作时总的脉压时间、分段数、任务时间比以及参与多片流水的DSP数量等与分段脉压点数之间的关系。设雷达脉冲宽度为1 μs,脉冲重复周期(PRT)为1 ms,带宽为200 MHz,脉压距离范围为10 km,采样率为220 MHz,I,Q两路合并输出为16 b。相邻两分段的重叠数据在ADSP-TS101之间采用Link口传输。随分段脉压点数d的变化规律见图3和图4。
由图3可以看出,流水操作时,随分段脉压点数d的增加,数据脉压时间是快速增加的,数据输入输出时间是先递减后缓慢增加的。总的脉压时间Tpip是先递减后快速增加的,这是因为,在d相对较小时,数据输入输出时间的减少量大于数据脉压时间的增加量,总的脉压时间Tpip的变化表现为减少;而随着d的增加,数据脉压时间的增加量明显大于数据输入输出时间的增加量,总的脉压时间Tpip的变化表现为快速增加,特别当d大于4 096点之后,数据脉压时间更成为总的脉压时间Tpip的主要部分。可以得出,分段脉压点数d的递减不一定总会带来总的脉压时间的减少,特别当d相对较小时,数据输入输出时间更成为制约总的脉压时间Tpip的主要因素。
作为一种探测目标信息的工具,雷达在现代战争中发挥着举足轻重的作用。在雷达回波信号处理中,通常利用线性调频信号脉冲压缩技术来获得高的距离分辨率。他有效地解决了雷达作用距离与距离分辨率之间的矛盾,可以在保证雷达作用距离的情况下提高雷达的距离分辨力。数字脉冲压缩就是利用数字信号处理的方法来实现雷达信号的脉冲压缩,分为时域和频域两种实现方式。时域脉压常用数字滤波器实现,而频域脉压常用专用的FFT芯片或DSP完成。一般而言,对于小时宽带宽积信号,用时域脉压较好;但对于大时宽带宽积信号,用频域脉压较好。随着通用DSP芯片本身处理能力的不断提高,基于并行DSP芯片的雷达信号处理系统基本能够满足雷达脉冲压缩信号处理实时性的需求。
本文针对雷达回波的实时脉冲压缩处理,首先分析了频域脉压处理方法,介绍了分段脉压原理。然后研究了基于DSP的多片流水分段脉压设计,以某宽带雷达回波为例,提出了基于4片ADSP-TS101芯片的高性能并行DSP硬件处理平台设计。最后给出了硬件实现和实验结果。
2 频域脉压实现分析
对接收到的信号作数字脉压,等同于信号通过一个加权的匹配滤波器。从时域来说,输出为信号与加权的匹配滤波器的线性卷积,等价于二者在频域的乘积。需要注意的是两离散信号频率域相乘相当他们在时域作圆卷积,为使圆卷积与线性卷积等价,待处理的信号须加零延伸,避免圆卷积时发生混叠。
设输入序列x(n)长度为L,系统冲击响应h(n)长度为M(M<L),输出y(n)。对于频域处理,其运算为:

式(1)实际上是圆卷积运算,在运算时,x(n)和h(n)必须至少补零到L+M-1点,等到x(n)完全读入后,开始脉压运算,得到的y(n)有效输出长度为L点。因此频域脉压处理时间大致分为数据块读入读出时间和脉压运算时间。总运算量包括L点x(n)数据输入、L+M-1点复FFT,L+M-1点复点乘、L+M-1点复IFFT以及L点y(n)数据输出。
当输入序列x(n)的长度L》M,直接做L+M-1点的脉压不仅运算量大、存储单元多,而且有很大的数据读入读出延迟。可以采用重叠保留法进行分段脉压处理。设x(n)均匀分段,每段长度为N(满足N≥M,N+M-1接近2的整数次幂),在每段后面再补上后一段的前M-1个输入序列值,组成N+M-1点序列,若为最后一段,则补M-1个零。每个N+M-1点序列与h(n)脉压后,输出的结果取前N点为每段的有效输出。这样按顺序拼接在一起即可得到输入序列x(n)的脉压输出。其原理如图1所示。
当分段脉压处理时,可以采用多个分段同时脉压的并行处理技术来减少整个脉压过程的处理时间。流水线技术(Pipeline)为并行处理系统设计中实现时间并行性提供了一种有效方法,他将输入流水线的任务分为一串子任务,相继的任务不断流人流水线,利用子任务在执行时间上的重叠(Time Interleaving),使得每个子任务都处在整个操作流程不同的处理段中,且保持在不同的完成阶段来达到操作级并行。
在忽略数据内部交换以及脉压前的数据浮点化等运算时间的前提下,可以将每段脉压任务大致分为数据输入、数据脉压和脉压结果输出三个子任务。若各段分段脉压过程均采用流水线技术操作,相邻两段脉压任务分别由不同的DSP完成。那么相邻两段脉压过程进入流水的时间仅相差数据输入的操作时间,流水操作如图2所示。

下面以某宽带雷达为例,在输入序列点数和分段重叠点数确定的情况下,采用AD公司的高性能定/浮点ADSP-TS101芯片,分析各流水任务时间、流水操作时总的脉压时间、分段数、任务时间比以及参与多片流水的DSP数量等与分段脉压点数之间的关系。设雷达脉冲宽度为1 μs,脉冲重复周期(PRT)为1 ms,带宽为200 MHz,脉压距离范围为10 km,采样率为220 MHz,I,Q两路合并输出为16 b。相邻两分段的重叠数据在ADSP-TS101之间采用Link口传输。随分段脉压点数d的变化规律见图3和图4。
由图3可以看出,流水操作时,随分段脉压点数d的增加,数据脉压时间是快速增加的,数据输入输出时间是先递减后缓慢增加的。总的脉压时间Tpip是先递减后快速增加的,这是因为,在d相对较小时,数据输入输出时间的减少量大于数据脉压时间的增加量,总的脉压时间Tpip的变化表现为减少;而随着d的增加,数据脉压时间的增加量明显大于数据输入输出时间的增加量,总的脉压时间Tpip的变化表现为快速增加,特别当d大于4 096点之后,数据脉压时间更成为总的脉压时间Tpip的主要部分。可以得出,分段脉压点数d的递减不一定总会带来总的脉压时间的减少,特别当d相对较小时,数据输入输出时间更成为制约总的脉压时间Tpip的主要因素。
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 达芬奇数字媒体片上系统的架构和Linux启动过程(06-02)
- FPGA的DSP性能揭秘(06-16)
- 用CPLD实现DSP与PLX9054之间的连接(07-23)
- DSP+FPGA结构在雷达模拟系统中的应用(01-02)
闁诲繐绻愮€氫即銆傞懜鐢碘枖闁规崘灏欓悷褰掓煕閳哄喚鏀版い鏂垮瀵偄鈻庨幋鏃€鐓犻梺瑙勪航閸斿繐鐣烽敓锟�
- 婵°倕鍊瑰玻鎸庮殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
闂佺ǹ绻堥崝宥夊蓟閻斿憡濯寸€广儱鎷嬮崝鍛槈閺冨倸孝闁汇劎濮甸敍鎰板箣濠婂懐鎳囨繛鎴炴尰濮樸劑鎮¢敍鍕珰闁糕槅鍘剧粈澶愭煙缂佹ê濮囩€规洖鐭傞幆宥夊棘閸喚宀涢悗瑙勬偠閸庢壆绱為弮鍫熷殑闁芥ê顦~鏃堟煥濞戞ǹ瀚板┑顕呬邯楠炲啴濡搁妷锕€娓愰梻渚囧亞閸犳劙宕瑰鑸碘拹濠㈣埖鐡曠粈瀣归崗鍧氱細妞ゎ偄鎳橀幆鍐礋椤愩倖顔忔俊顐ゅ閸ㄥ灚瀵奸幇顔剧煓閻庯綆浜為悷锟�...
- 婵炴垶鎼╅崢鐐殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
缂備緡鍣g粻鏍焵椤掑﹥瀚�30婵犮垼鍩栧畝绋课涢鍌欑剨闁告洦鍨奸弳銉╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺屻倝鏌ㄥ☉妯侯殭缂佹鎸鹃埀顒傤攰閸╂牕顔忕捄銊﹀珰闁规儳鎳愮粈澶愭煕閺傜儤娅呮い鎺斿枛瀹曘劌螣閻戞ê娓愰梻渚囧亞閸犳洟骞撻鍫濈濡鑳堕鍗炩槈閹垮啩绨婚柟顔奸叄瀵粙鎮℃惔锝嗩啅婵☆偆澧楅崹鍨閹邦喚鐭欓悗锝庝簽閻熷酣鏌i妸銉ヮ伂妞も晪绠戞晥闁跨噦鎷�...
- Agilent ADS 闂佽桨鐒﹂悷銉╊敆閻旂厧鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
婵炴垶鎸婚幐鎼侇敊瀹ュ绠抽柛顐秵閸わ箓鏌ㄥ☉妯垮闁告瑥绻樺Λ鍐閿濆骸鏁奸柣鐔哥懐閺嬪儊S闂佸憡鑹剧€氼噣锝為幒妤€绀夐柣鏃囶嚙閸樻挳鏌涘⿰鍐濞村吋鍔楃划娆戔偓锝庝簽鐎瑰鏌i姀鈺冨帨缂侀亶浜跺畷婵嬪煛閸屾矮鎲鹃梺鐑╁亾閸斿秴銆掗崼鏇熷剹妞ゆ挾濮甸悾閬嶆煛閸愩劎鍩f俊顐ユ硶閳ь剚鍐荤紓姘辨閻у挷S...
- HFSS闁诲孩鍐荤紓姘卞姬閸曨垰鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
闁荤姍鍐仾缂佽鐒︾粙澶愬箻閹颁礁鏅欓梺鐟版惈閻楁劙顢氶幎鑺ユ櫖閻忕偠妫勫鍧楁⒒閸稑鐏辨い鏂款樀楠炴帡宕峰▎绂⊿闂佹眹鍔岀€氼剚鎱ㄥ☉銏″殑闁芥ê顦扮€氭煡骞栫€涙ɑ鈷掗柡浣靛€濋弫宥囦沪閽樺鐩庨梺鍛婃煛閺呮粓宕戝澶婄闁靛ň鏅滃銊х磼椤栨繂鍚圭紒顔芥そ瀹曠兘寮跺▎鎯уΤ婵炴垶姊绘慨鐢垫暜婢舵劕绠垫い鈥抽敪SS...
- CST閻庣敻鍋婇崰妤冧焊濠靛棭鍟呴柕澶堝€楃粙濠囨倵楠炲灝鈧洟鎮$捄銊﹀妞ゆ挾鍠愬▓宀€绱掔€n亶鍎忔い銊︾矌閹叉鏁撻敓锟�
闂佸搫顦€涒晛危閹存緷铏光偓锝傛櫅閻︽粓鎮规担绛嬪殝缂佽鲸绻堝畷妤呭Ω閳哄倹銆冮柣鐘辩瀵泛顔忕欢缍璗闂佸憡鑹剧€氫即濡村澶婄闁绘棁顕ч崢鎾煕濠婂啳瀚板ù鍏煎姉缁瑧鈧綆浜炵€瑰鏌i姀鈺冨帨缂佽鲸绻堝畷婵嬪煛閸屾矮鎲鹃棅顐㈡祩閸嬪﹪鍩€椤掑倸鏋欓柛銈嗙矌閳ь剚鍐婚梽鍕暜婢舵劕绠垫い鈥愁敍T闁荤姳鐒﹀畷姗€顢橀崨濠冨劅闁哄啫鍊归弳锟�...
- 闁诲繐绻愮€氫即銆傞崼鏇炴槬闁惧繗顕栭弨銊╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺岋拷
婵炴垶鎸稿ú锝囩箔閳ь剙螖閸屾惮鎴﹀Χ婵傚摜宓侀柛鎰级閸曢箖鎮硅閸ゆ牜妲愬┑鍥ㄤ氦婵炲棗娴烽弰鍌炴偣閸パ冣挃闁宠鍚嬬粙澶嬫姜閹殿喚鈽夐梺闈╄礋閸斿矂鎯冮悩绛圭矗闁瑰鍋涜灇闂佸搫鐗滈崹鍫曘€傞锕€鏄ラ柣鏃€鐏氭禍锝夋倶閻愬瓨绀冮悗姘辨暬閹虫ê顫濋崜褏顦梺鐟扮仛閹搁绮崨鏉戦敜婵﹩鍓涢弶浠嬫煟閵娿儱顏х紒妤佹尰缁嬪顫濋鍌氭暏缂佺虎鍘搁崑锟�...
- 閻庣敻鍋婇崰妤冧焊濠靛牅鐒婇柛鏇ㄥ灱閺嗐儲绻涢弶鎴剶闁革絾妞介獮娆忣吋閸曨厾鈻曢梺绯曟櫇椤㈠﹪顢欓崟顓熷珰闁告挆鈧弻銈夋煕濮橆剛澧︽繛澶涙嫹
闁荤姵鍔﹂崢娲箯闁秴瑙﹂柛顐犲劜閼茬娀鏌¢崶銊︾稇闁汇倕瀚伴獮鍡涙偑閸涱垳顦紓鍌氬暞閸ㄧ敻宕规惔銊ノュ〒姘e亾妞わ絽澧庨幏顐﹀矗濡搫纾块梺闈涙閼冲爼濡靛顑芥灃闁靛繒濮甸悵銈夋煏閸℃洘顦峰ǎ鍥э躬瀹曪綁鏌ㄧ€n剛鍩嶉梺鎸庣☉閺堫剟宕瑰⿰鍛暫濞达絽婀辨竟澶愭煛瀹ュ妫戠紒銊ユ健閺屽懘鏁撻敓锟�...
栏目分类