微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 让生物识别技术成为FPGA动态部分重配置功能的“杀手级”应用

让生物识别技术成为FPGA动态部分重配置功能的“杀手级”应用

时间:02-27 来源:电子产品世界 点击:

主 MMU)负责处理对大型 DDR-SDM 存储器进行直接存储器存取 (DMA)。为了实现,我们定制了一个从MMU,并在其中设置了多个控制寄存器,将这个MMU挂在PLBv46总线上并由CPU直接控制。

采用这种方式,CPU 仅需做两件事情:配置在 PRR 中下载的部分比特流的初始地址和大小;向主系统 MMU 发出执行指令,以启动重配置过程。而后,主系统 MMU 开始将比特流以 DMA(直接内存存储)的方式直接传输给内部的 FIFO,随后再从该 FIFO 传输给 ICAP 接口。一旦传输完毕,重配置控制器就会通知 CPU。

结果,即使在 CPU 通过 XCL 或 PLBv46 总线访问 DDR-SDRAM 的同时,我们也能实现部分比特流传输的最大吞吐量。其最终原因在于 CPU 在内部 BM(block-M)高速缓存中运行程序流,将对外部 DDS-SDRAM 的访问释放给了重配置控制器。值得重点指出的是,这个为部分比特流和软件应用分配的 DDR-SDRAM 存储器并非专用资源,而是共享资源。即使如此,该方案与其它现有的重配置控制器方案相比性能也有显著的改善,因为其能够实现 Virtex-4的最大重配置吞吐量(通过 32 位数据总线以 100MHz 的频率或 3.2 Gbps 的速率将部分比特流传输给 ICAP)。

  实验结果

从本质上讲,文中所述的嵌入式自动指纹识别系统是一种高性能图像处理应用,因为它拥有大量的并行性,且需要实时认证响应。从人机工程角度上讲,此系统可使每位用户的认证时间不超过 2 s或3s。

该设计流程涉及多个开发环路。首先,我们在 PC 平台上的 MATLAB 的软件里开发算法。随后,我们将软件代码用 C 编程语言导入到嵌入式软件中,并且首先在同一 PC 上执行,以确认我们能够获得同样的结果,然后在 FPGA 器件内合成的 MicroBlaze 嵌入式微处理器上执行。

通过这种方式,Virtex-4 器件可在不使用任何定制硬件协处理器和不达到实时性能要求的情况下实施基于 MicroBlaze 的纯软件解决方案。为缩短运行时间,我们根据任务概要,下一步工作是引入 PRR,并在上面构建各种定制生物识别协处理器,使用硬件/软件协同设计解决方案。此刻,我们已经采用 C 编程语言和 VHDL 硬件描述语言完成了此系统的开发工作。

我们采用 268x460 像素的 8 位灰度指纹图像进行了一些识别测试。同时,我们在基于 Virtex-4 的 PR 系统上和运行速度为 1.83GHz 的 Intel Core 2 Duo T5600 处理器的个人电脑上也进行了相同的测试。然后,我们运行相同的算法,包括纯软件实施方式和软硬件混合实施方式,以比较登录和识别阶段的性能。

如果不考虑采集工作(由于扫描传感器的性能限制,需以 5ms 积分时间采集 100 片并在运行中重构图像,故采集时间固定为 500ms),PR 方法可以把运行其他处理任务所形成的延迟降低到 205ms。与在 PC 上运行纯软件方法的 3,274ms 的延迟相比,PR 方法可提高 16 倍速度。

因此,表 1 说明运用并行和流水线技术进行软硬件协同设计,同时配合低重配置延迟的 PR 技术,明显实现实时认证是可行的。另外,在动态重配置时,可以指定模块运行的频率,这个频率是由新模块的特性所决定。在我们的设计中,所有模块运行在50MHz或者100MHz的频率下。

此外,重配置流程一直以 100MHz 运行,在每个时钟周期里传输 32 位比特,从而保证 Virtex-4 上的最低重配置延迟。根据每个 PRR 硬件环境的比特流复杂性,每个重配置流程花费的时间在 0.8ms(例如标准化)和 1.1ms(例如二进制化)之间。与生物识别应用的总体运行时间相比,该重配置时间可忽略不计。

由于我们已经成功完成了概念验证工作,我们准备把原型导出到新一代赛灵思低端具有 PR 功能的 28 纳米FPGA 器件中(Artix-7 系列)。我们的目标是以最低的成本设计出一款能够在任何消费类电子产品中嵌入高性能且真正安全的生物识别系统。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top