微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 嵌入式设计 > 高速红外VFIR控制器的设计与实现

高速红外VFIR控制器的设计与实现

时间:07-20 来源:互联网 点击:

分析S5933与红外TX/RXFIFO、红外寄存器组访问控制逻辑以及红外接口控制逻辑和红外接发器接口功能。

2.1 红外TX/RXFIFO与红外控制寄存器组控制逻辑

AMCC S5933支持3个物理总线接口:PCI总线接口、扩充总线接口和非易失性EEPROM总线接口。非易失性EEPROM用于映射PCI的配置空间及设备BIOS的初始化;扩充总线可以与外设设备互连。主机和外设之间可以利用S5933的邮箱寄存器、FIFO寄存器、直通寄存器(Pass-Thru)数据传输方式双向传输数据。

红外寄存器组包括红外接口控制寄存器和状态寄存器。本文中甚高速红外控制利用S5933直通寄存器单周期数据传送向红外接口控制寄存器写控制字,由Pass-Thru逻辑控制电路把地址和数据分离开,直通地址寄存器(APTA)经374锁存并译码,选通红外接口控制寄存器,同时把直通数据寄存器(PTDA)的低字写入红外控制器;该接口控制寄存器的数据宽度为16位,包括红外控制器始能、工作模式(UART、SIR、MIR、FIR、VFIR)的设置,接收或发送数据的选择以及满足SIR模式下多波特率的分频数。红外接口控制寄存器结构定义如图2。

同理使用直通寄存器方式获取红外接口状态寄存器的状态。红外接口状态寄存器结构定义如图3。

为满足高速数据传输,利用S5933 FIFO寄存器总线主控方式下的同步猝发(Burst)操作(DMA传送)完成主机与红外TX/RXFIFO的数据传输。PCI接口首先初始化S5933作为总线主控设备,然后由PCI接口向主控读/写地址寄存器(MRAR/MWAR)写入要访问的PCI存储空间地址,向主控读/写计数器(MRTC/MWTC)写入要传输的字节数。S5933提供了4个专用引脚RDFIFO#、WRFIFO#、RDEMPY#和WREULL#控制内部FIFO与外部FIFO的数据传输接口逻辑。接收/发送FIFO的数据宽度都是32位,分别由4片8位数据总线的IDT72220 FFO数据位扩展实现。该FIFO既为PCI接口提供数据缓冲,又为红外收发器接口提供访问数据。S5933与红外TX/RXFIFO、红外寄存器组的数据访问控制逻辑如图4。

2.2 红外接口控制逻辑

根据红外接口控制寄存器控制字,红外接口控制逻辑实现外部RX/TXFIFO与红外收发器接口之间的数据传输和逻辑时序。它的工作原理如下:根据控制字,首先启动红外收发器接口CRC校验、编解码器和可编程时钟(RX/TXFIFO读/写时钟RCLK、WCLK和编解码时钟fclock),然后根据控制字的TX/RX位决定是接收还是发送数据。发送数据时,TXFIFO缓冲器不为空,TXFIFO的EF信号就触发红外接口控制逻辑发TXFIFO读操作信号ENR#,读取TXFIFO的数据(数据宽度32位)传给红外收发器接口进行CRC校验、编码以及并/串转换。同理当甚高速红外控制器接收数据时,红外收发器接收到的数据经过译码、串/并转换(数据宽度32位),然后触发红外接口控制逻辑发出红外接收FIFO的写操作信号ENW#,把接收数据写入红外接收FIFO。当RXFIFO写满后,触发控制逻辑发出S5933 FIFO写信号WRFIFO#,上层协议启动PCI接口初始化S5933为同步主控写操作实现红外接收FIFO到主机内存的数据传畀。另外红外接口逻辑还实现红外接口状态寄存器状态的配置,以方便上层协议了解红外控制器工作状态。

2.3 红外收发器接口

红外收发器接口的设计与实现是红外控制器成功的关键。该接口需要实现各种工作模式(SIR、MIR、FIR、VFIR)的编解码器和硬件CRC校验、设计比较复杂。编码器前、译码器后,数据都要进行硬件CRC校验实现差错控制。SIR模式采用RZI(归零反转)编码,信号为高电平,调制为低电平;信号为低电平,调制为高电平脉冲,最大脉冲宽度是位周期的3/16。MIR模式也采用RZI(归零反转)编码,但最大脉冲宽度是位周期的1/4。FIR模式采用4PPM(脉冲位置调制)调制,它的原理是被编码的二进制数据流每两位组合成一个数据码元组(DBP),其占用时间Dt=500ns,再将该数据码元组(DBP)分为4个125ns的时隙(chip),根据码元组的状态,在不同的时隙放置单脉冲。由于PPM通信依赖信号光脉冲在时间上的位置传输信息,所以解调时先保证收发双方时隙同步、帧同步,然后根据脉冲在500ns周期中的位置解调出发送数据。考虑到红外收发器通信距离突然变化引发脉冲宽度扩展,发生码间干扰,导致译码出错,因此根据Hiroshi Uno提出的新算法[7]简化4PPM译码过程,并通过实验验证该算法比最大似然译码算法结构更简单,功耗更低,而且更容易实现。

VFIR模式采用HHH(1,13)编解码技术。编码器原理:为了正确实现编码,要求在计算内部码字C=(c1,c2,c3)之前,在nT(T表示一个chip时间)时刻到达编码器输入端的输入数据码元组d=(d1,d2)经过3个编码周期(每个编码周期是

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top