基于DSP和FPGA的视频编码器
在C6201片内存储区(PRAM和DRAM),其代码执行速度要比代码和数据在片外同步SDRAM中平均快17倍(片内总线宽度为256位,数据访问为1个CPU周期)。因此,将执行代码和数据放到片内将大大提高程序的运行速度。
在MPEG-4算法中,由于没有考虑存储器的限制,算法每次读入一帧YUV数据进行压缩编码。但对于C6201来说,片内只有64K字节DRAM,不可能一次将一帧数据读到片内存储器进行压缩。如果将一帧数据一次读到片外存储器(SDRAM)中进行压缩,又会大大降低代码的执行速度,因此,我们对视频压缩算法进行了改进,一次对一个切片(slice)数据进行压缩编码,并将压缩码流数据直接送入到发送缓冲区中。
编码器一次将一个切片的YUV数据(当前帧)读入到片内存储器中,然后根据计算决定切片宏块的编码类型(帧内/帧间编码)。如果宏块进行帧内编码,则YUV数据被分成8×8的像素块(一个宏块包含4个Y分量像素块和2个UV分量像素块)进行DCT变化,以消除图像空间冗余信息。DCT变化后的系数经过量化后进行游程编码(RunLengthCoding即RLC)和变长编码(VariableLengthCoding,即VLC),变长编码的结果送入到视频发送缓冲区中。与此同时,量化后的DCT系数经过反量化(结果放入内存B中)和反DCT过程形成重建帧,重建帧用作下一帧的参考帧。
如果宏块进行帧间编码,则以宏块为单位进行运动估计,根据运动估计的结果建立预测帧。当前帧和预测帧的差值形成了残差帧(residue frame),残差帧的编码过程与帧内编码过程相同。
(2)宏块编码类型判别算法
在MPEG-4算法中采用了快速运动估计算法,但是在进行宏块编码类型判别时计算量仍然很大。为此,本文提出了基于宏块空间复杂度的判别算法MTJBSC,进一步降低了运动估计过程中的计算量。
在编码P帧宏块的时候,首先要决定宏块是进行帧内编码还是帧间编码。在标准MPEG-4算法中是通过以下方法决定的[5]:
设参考宏块的像素值(Y分量值,以下同)用P(x,y)表示,当前宏块的像素值用C(x,y)表示,x,y表示宏块的纵、横坐标,M,N表示宏块的宽和高。当前宏块像素值的方差用EVAR表示,其值为
参考宏块和当前宏块的方差用EVMC表示,其值为
EVMC值越小(比如EVMC if(EVMC>EVARandEVMC≥9)then帧内编码else帧间编码 显然,在MPEG-4算法中,为了判断宏块的编码模式进行了大量的计算(对于每一个P帧宏块都要进行上面的计算)。为了减少计算复杂度,本文提出了基于宏块空间复杂度(EMBC)的宏块类型判断(MTJBSC)算法,用以判断P帧宏块的帧内/帧间编码模式。 定义宏块的空间复杂度为水平方向上相邻像素差值的绝对值之和,即 在基于帧间差原理进行视频压缩的MPEG标准中,一般都是采用绝对差总合(ESAD)来进行运动估计的。在MPEG标准中,宏块的ESAD值定义为 式中:m,n为该宏块的运动向量。 根据上述定义,MTJBSC算法可简单描述为: 如果宏块的ESAD小于其EMBC,则该P帧宏块进行帧间编码;否则进行帧内编码。实验表明,在压缩质量和压缩输出码率均没有大的变动的情况下,该算法有效降低了视频编码器的计算复杂度,编码器的压缩帧率(f/s)得到明显提高。
3 测试结果
表1为编码器进行装载测试的测试结果(1帧的平均值)。装载测试是首先将视频测试序列装载到编码器的SDRAM中,然后进行压缩编码。使用的视频序列为标准测试序列mother(CIF格式,彩色,YUV4∶2∶0,5帧),DSP主频设置为200MHz。
表2为美国TI(TexasInstrument)公司基于DSK6711EVM板开发的H.263视频编码器的性能测试数据(装载测试)[6],DSP主频为150MHz。TI公司针对DSK6711对H.263做了全面优化,算法关键代码采用了线性汇编语言编写。H.263视频编码算法与MPEG视频编码算法的压缩编码原理、过程和计算复杂度大致相当,因此二者具有可比性。
从表1和表2可以看出,研制的视频编码器平均压缩帧率为39.2f/s(CIF图像),而TI公司开发的视频编码器平均压缩帧率为20f/s(CIF图像),绝对性能提高了96%,考虑到DSP主频的因素,相对性能仍然提高了47%。
4 结论
采用DSP和FPGA协同技术设计实现了一个高性能的MPEG24视频编码器。使用FPGA完成编码器I/O功能,使用DSP进行视频压缩编码,二者能够很好地并行工作,系统设计结构简捷,硬件工作可靠。同时,针对DSPC6201片内资源特点优化了视频压缩的数据流模式,采用MTJBSC算法有效地降低了压缩算法的计算复杂度。测试结果表明,采用MPEG24视频标准该视频编码器每秒能够每秒压缩39.2帧CIF图像。
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 达芬奇数字媒体片上系统的架构和Linux启动过程(06-02)
- FPGA的DSP性能揭秘(06-16)
- 用CPLD实现DSP与PLX9054之间的连接(07-23)
- DSP+FPGA结构在雷达模拟系统中的应用(01-02)