微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柟缁㈠枟閸庡顭块懜闈涘缂佺嫏鍥х閻庢稒蓱鐏忣厼霉濠婂懎浜惧ǎ鍥э躬婵″爼宕熼鐐差瀴闂備礁鎲¢悷銉ф崲濮椻偓瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顓犵<闁绘劦鍓欓崝銈嗙箾绾绡€鐎殿喖顭烽幃銏ゅ川婵犲嫮肖闂備礁鎲¢幐鍡涘川椤旂瓔鍟呯紓鍌氬€搁崐鐑芥嚄閼搁潧鍨旀い鎾卞灩閸ㄥ倿鏌涢锝嗙闁藉啰鍠栭弻鏇熺箾閻愵剚鐝曢梺绋款儏濡繈寮诲☉姘勃闁告挆鈧Σ鍫濐渻閵堝懘鐛滈柟鍑ゆ嫹04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝曢梻浣藉Г閿氭い锔诲枤缁辨棃寮撮姀鈾€鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁哄啠鍋撴繛鑼枛閻涱噣寮介褎鏅濋梺闈涚墕濞诧絿绮径濠庢富闁靛牆妫涙晶閬嶆煕鐎n剙浠遍柟顕嗙節婵$兘鍩¢崒婊冨箺闂備礁鎼ú銊╁磻濞戙垹鐒垫い鎺嗗亾婵犫偓闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗24闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閻樻爠鍥ㄧ厱閻忕偛澧介悡顖氼熆鐟欏嫭绀€闁宠鍨块、娆戠磼閹惧墎绐楅梻浣告啞椤棝宕橀敐鍡欌偓娲倵楠炲灝鍔氭繛鑼█瀹曟垿骞橀懜闈涙瀭闂佸憡娲﹂崜娑㈡晬濞戙垺鈷戦柛娑樷看濞堟洖鈹戦悙璇ц含闁诡喕鍗抽、姘跺焵椤掆偓閻g兘宕奸弴銊︽櫌婵犮垼娉涢鍡椻枍鐏炶В鏀介柣妯虹仛閺嗏晛鈹戦鑺ュ唉妤犵偛锕ュ鍕箛椤掑偊绱遍梻浣筋潐瀹曟﹢顢氳閺屻劑濡堕崱鏇犵畾闂侀潧鐗嗙€氼垶宕楀畝鍕厱婵炲棗绻戦ˉ銏℃叏婵犲懏顏犵紒杈ㄥ笒铻i柤濮愬€ゅΣ顒勬⒒娴e懙褰掓晝閵堝拑鑰块梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕婵犲倹鍋ラ柡灞诲姂瀵挳鎮欏ù瀣壕闁告縿鍎虫稉宥夋煛瀹ュ骸骞楅柣鎾存礃閵囧嫰骞囬崜浣荷戠紓浣插亾闁逞屽墰缁辨帡鎮欓鈧崝銈夋煟韫囨梻绠為柛鈺冨仱楠炲鏁傞挊澶夋睏闂佽楠稿﹢杈ㄦ叏閹绢啟澶娾攽閸垻锛濇繛杈剧到閹碱偊顢撳畝鍕厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘
首页 > 射频和无线通信 > 射频无线通信文库 > 射频工程师应该掌握的“猜”的技能

射频工程师应该掌握的“猜”的技能

时间:05-19 来源:FindRF 猪头是头猪 点击:

多年前曾有一次在国外出差,遇到一群工程师在讨论一个MCM(multi-chip-module)热耗问题,两家供应商的MCM,RF工程师在上头贴了热电偶测温度,测出来的温度差距挺大,完全无法用效率差异来解释。

我瞄了一眼,插了一句:"里面的RF PA是不是有一个是倒装(flip chip)的,另一个不是?"

一群人愣了一下,然后为头的那位老哥很兴奋的说:"I like this theory!"

十年前我在公司里做基站功放,那时候系统部专门招了一位博士来做热仿真,我记得刚开始打交道的时候,她就让我问供应商要他们的热仿真模型,不给的话就要各层材料的热阻和尺寸,然后自己建模做仿真。

其实之前我们估结温都很粗糙,在法兰盘(那时候PA module法兰安装的还是主流)上贴一个热电偶,测完温度拿厂商给的热阻一算拉倒。直到这位博士来了,我们才开始精细的计算热分布。

那时候RF工程师很多也是不懂热设计的,所以一开始闹了很多笑话:

问:"为啥不在芯片上面贴个散热片?(我脑海中忽然出现了Intel P4红泥小火炉)"

答:"瓷封里面是抽真空或者充惰性气体,加上瓷封本身也是热的不良导体,一级一级的串联热阻巨大,上面再贴散热片效果不佳。"

问:"那为啥FPGA上贴着好多?"

答:"FPGA的molding材料导热性相比真空、惰性气体或者陶瓷要好得多。"

问:"为啥非要我把PA竖着摆?我走线都不好走!"

答:"PA竖过来之后,从外面看可以跨三道(散热)齿,横着摆只能跨一道。"

再往后五年,又回到基站行业的时候,已经不是当年的菜鸟了,终于能坐下来跟热工程师一起讨论问题了。

回到最开始的那个问题,为什么我猜那个MCM里面的IC是倒装的?因为倒装芯片会有更多的热耗通过焊球直接向PCB方向扩散(对于通常没有散热片更没有水冷风冷的RF设计来说这是最合理的),相比传统的bonding wire模式(朝向PCB方向)热阻更低、散热效率更高。如果MCM的molding工艺差不多,那么在MCM上表面测到的温度显然不同。

我刚到Nokia的时候,还不怎么懂手机设计,有一次大家在一起讨论刚遇到的一个GSM modulation spectrum问题,大概是说在低温下调制谱在正负100多kHz左右的地方出现了鼓包,而且只有低温下会出现。

我的第一反应是:PA偏置电路自激。

当然,那时候没人理会我这个手机菜鸟的看法。还是按照正常处理流程,一级级查过来,最终还是确认问题在PA上,于是大家把出问题的PA切下来送回厂商分析去了。

过了两个星期,报告回来了:偏置电路上的运放自激。

我得说当时的同事们中间没有谁能比我见过更多的自激案例。做PA的天然就要与自激作斗争——我师傅经常笑话我两天之内烧掉五个管子的"光荣事迹"。

但是一般的PA自激,往往是出现不正常的输出功率甚至烧掉管子,如果要在正负100多kHz的地方造成稳定的频谱再生,这多半是有个100kHz左右的信号混到了PA里面产生了交调。

那么100kHz左右的信号,说明这个器件大概率是个普通模拟器件而不是RF元件,工作带宽或者频率阈值最多也就这么高。这种元件什么最多呢?运放类或者电压比较器,而在PA的偏置和控制电路里是比较常见的。

再加上最重要的一点:低温。低温下器件的增益会变高而稳定性降低,如果这个问题仅仅在低温下可见,那么就有可能是低温下的自激。

某次在工厂里有块板子坏了,工程师怀疑是FEM(front-end module)出了问题,就用万用表去量FEM的输出,果然是对地短路了,他认为是PA被击穿了,然后报告就这么写了出去。

我问了一下电流,他们回答电流偏大一点,但是并没有大的离谱,FEM表面也不是很烫。当时我就觉得那工程师量错了——不是说他测量结果有问题,而是说测量结果根本不说明问题。

有很多FEM在设计的时候,为了ESD的考虑,都会在输出口上放一个对地的电感;这个电感的好处是对射频相当于高阻,但是对静电放电可以成为泄放通路。那么用万用表直接量输出口,肯定会因为这个电感的存在而测量到对地短路。

对于PA来说,最糟糕的情况是发射极到集电极之间或者是源极到漏极之间被打穿,这时候量到的一定是对地短路。然而这种情况下第一是会出现大电流(GSM PA的VCC一般是通过一个MOS管直接接到电池供电上的),第二是PA会明显发烫;如果两者都没有出现,一般不是PA击穿。

这三个例子,有一个共同点:猜。

工程师在很多时候是找不到直接证据的,或者说获取直接证据有可能需要破坏现场。这时候就要靠猜,先猜一个或者几个合理的方向,再继续深入。

对于RF工程

灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top