基于FPGA的级联H桥多电平变流器CPS-PWM触发脉冲快速生成
1 引言
CPS-SPWM技术由于具有等效开关频率高、输出电压谐波含量小、信号传输带宽较宽及控制方法简单等优良特性而被广泛应用在级联H桥多电平变流器中。
较典型的SPWM实现方法主要分为两类:自然采样法和规则采样法,而规则采样法通常存在对称规则采样和不对称规则采样两种方法。文献提出基于不对称规则采样法的GPS-SPWM实现方法,其结论为:相对于规则采样法,采样点和计算量增加了一倍;但变流器输出电压谐波含量却大为减少,波形的不对称性也有所改善。
在此阐述了级联H桥多电平变流器的CPS-PWM脉冲生成时序。在此基础上,提出一种应用于级联H桥多电平变流器,基于不对称规则采样的CPS-SPWM触发脉冲的快速、精确的生成方法。介绍了基于FPGA的级联H桥多电平变流器的CPS-PWM触发脉冲快速生成的实现方法。
2 CPS-SPWM触发脉冲的生成时序
级联H桥型多电平变流器的单相主电路结构如图1所示,为分析方便,取级联单元数N=5。元左、右桥臂上、下IGBT开关器件;ux为各单元交流侧输出电压;u为级联装置单相输出总电压;Udc为各单元直流侧电压。装置采用基于CPS-SPWM的单极性开关调制方法,各单元载波urx相互错开时间Ts=Tc/(2N),其中Tc为载波周期。
各单元的脉冲生成时序如图2所示。urx的相位与urx-相差180°,分别用来形成功率单元x的VTx1和VTx4的触发脉冲;us为SPWM调制波。
如图所示,在tn时刻(n=1,…,10;Ts为一个采样周期,tk+1-tk=Ts)采样调制波us,根据不同的采样方法,依次生成SPWM触发脉冲Px1,Px4,分别对应触发VTx1和VTx4;VTx2,VTx3的触发脉冲Px2,Px3分别与Px1,Px4相反,实际应用中加死区延时。
实际应用中,载波并不以具体波形存在,而代之以双向计数器。这里定义计数器Tx1和Tx4分别对应载波urx和urx-;另设Tx1CMP和Tx4CMP分别为Tx1和Tx4的比较寄存器。
3 CPS-SPWM触发脉冲快速生成原理
不对称规则采样方法是指在一个载波周期中的峰、谷各采样一次调制波,如图3所示。在t1时刻采样us,计算占空比并加载至T11CMP,在t2时刻T11开始增计数,当比较匹配时形成P11的下降沿;在t6时刻再次采样us,计算占空比并更新T11CMP,在T11上溢时刻开始减计数,当比较匹配时形成P11下一个脉冲的上升沿。
可见,依据此种方法生成的触发脉冲,较理论上的脉冲延时亦仅为一个Ts,且由于在一个载波周期中两次采样正弦调制波,精度较高。该方法主要缺点是提高了采样频率,增加了计算工作量。但对于如图2所示的级联功率单元的触发时序而言,该方法既没有提高采样频率,又没有增加计算量,具体分析如下:
根据图3,对于生成同一个触发脉冲,如P11,分别在t1和t6时刻都进行了采样,脉冲生成的采样频率比对称规则采样法高出了1倍。但实际上,参照图2所示的级联单元脉冲生成时序,t6时刻也对应触发脉冲P14生成的采样时刻,因此,总体而言,采样频率没有提高,只是同一采样时刻要进行两个占空比值的计算,如t6时刻,分别要计算P14,P11的占空比D14,D11。只要证明此时D14等于D11即可说明该方法无需增加计算量,证明如下:设TW11=D11Tc,TW14=D14Tc,显然存在:(Tc-TW11)/2=(Tc-TW14)/2,解得TW11=TW14,也即D11=D14,由此可知,任何采样时刻仅需进行一次占空比计算,而无需增加额外的计算量。
P11和P14生成过程及时序为如图4所示。在t1时刻,采样us并计算D11(D14),并加载到T11CMP和T14CMP,当下一个同步信号到达即t2时刻清零T11开始增计数,生成P11的下降沿;同时,重载T14并开始减计数,生成P14的上升沿。同理,在t6时刻,采样us计算D14(D11),并加载到T14CMP和T11CMP,在t7时刻分别清零T14开始增计数,重载T11并开始减计数,生成P14的下降沿和P11的上升沿。
参照图2,整个级联单元的脉冲生成时序为:
①t1,t2,t3,t4,t5时刻采样依次生成的SPWM触发脉冲为:P11↓(下降沿)和P14↑(上升沿),P21↓和P24↑,P31↓和P34↑,P41↓和P44↑,P51↓和P54↑;
②t6,t7,t8,t9,t10时刻采样依次生成的SPWM触发脉冲为:P14↓和P11↑,P24↓和P21↑,P34↓和P31↑,P44↓和P41↑,P54↓和P51↑。
4 触发脉冲快速生成的实现方法
为充分发挥上述级联H桥变流器CPS-SPWM触发脉冲快速生成方法的优越性,采用规模大、集成度高、可靠性强、编程灵活的FPGA芯片EP2C20/EP2C5,来完成触发脉冲生成及其他包括分配、传输、驱动、逻辑综合与控制等功能。
实际工程中,触发脉冲生成由两部分组成,即顶层触发监控模块、底层脉
脉冲形成 CPS-SPWM技术 FPGA 相关文章:
- 在采用FPGA设计DSP系统中仿真的重要性 (06-21)
- 基于 DSP Builder的FIR滤波器的设计与实现(06-21)
- 基于FPGA的快速并行FFT及其在空间太阳望远镜图像锁定系统中的应用(06-21)
- 3DES算法的FPGA高速实现(06-21)
- 用FPGA实现FFT算法(06-21)
- FPGA的DSP性能揭秘(06-16)