微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 锁相环在微机保护中的应用

锁相环在微机保护中的应用

时间:10-18 来源:互联网 点击:

SCLK是CPU为AD提供的时钟信号。

3.1 信号调理电路

如图4所示,第一级运算放大器构成了电压跟随器,减小输出电阻,提高带负载能力;第二级运算放大器构成了反向加法电路,用于调零漂;第三级运算放大器也构成了电压跟随器,减小输出电阻,即减小AD内部的时间常数,提搞AD的采样频率。同时,U2还经过电压比较器和地电位比较后,输出方波F_IN1,作为锁相环的输入。

3.2 锁相环及倍频电路

如图5所示,分频器选用CD4040,设计时通过跳线T1、T2、T3设置了3个可选的分频倍数,分别为16倍频、32倍频、64倍频。图4(b)的输出信号接入CD4046的14管脚,作为输入信号,4管脚是输出信号,去控制AD7656启动采样。

3.3 AD7656采样电路

如图6所示为AD7656级联电路图,锁相环的输出信号PLL-CONVST控制两块AD7656的21、22、23管脚,同时启动12路采集;CPU作为主机为AD7656的11管脚(AD—SCLK)提供时钟信号。CPU从图6(a)的管脚7(DATA—OUTA)通过SPI读取数据;图6(a)的12管脚与图6(b)的管脚7连接,实现两块AD7656的级联;通过判断AD7656的18管脚(AD—BUSY)来提醒CPU读取转换数据。

4 实验结果

如图7(a)-(c)所示为倍频采样脉冲信号,上半屏为工频50 Hz的方波信号,下半屏为倍频后的采样脉冲信号。图7(a)为16倍频采样脉冲信号,图7(b)为32倍频采样脉冲信号,图7(c)为64倍频采样脉冲信号。从图中可以发现,利用锁相环CD4046和分频器CD4040实现了硬件同步采样。同时,采样脉冲的波形在上升沿后有一个下降的过程,由于AD7656是上升沿触发采样,因此并不影响AD7656启动采样。

5 结束语

基于锁相环的同步采样技术,解决了软件同步采样的实时性差、软件编写复杂等问题。在微机保护装置中,实现了等周期同步采样,提高了交流电流、电压参数的测量精度和时实性。此外,该方法还可以应用于其他交流采样算法,比如电能质量监测、故障录波等,具有实用价值。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top